Speaker
Description
Classical Novae were revealed as a surprise source of gamma-rays in Fermi LAT observations. During the first 8 years since the LAT was launched, 6 novae in total have been detected to > 5 sigma in gamma-rays, in contrast to the 69 discovered optically in the same period. We attempt to resolve this discrepancy by assuming all novae are gamma-ray emitters, with peak one-day fluxes consistent to those observed. To determine optical parameters, the spatial distribution and magnitudes of bulge and disc novae in M31 are scaled to the Milky Way. We approximate Galactic reddening using a double exponential disc with vertical and radial scale heights of r_d = 5 kpc and z_d = 0.2 kpc, and demonstrate that even such a rudimentary model can easily reproduce the observed fraction of gamma-ray novae, implying that these apparently rare sources are in fact nearby and not intrinsically rare. We conclude that classical novae with m_R < 12 and within ~8 kpc are likely to be discovered in gamma-rays using the Fermi LAT.