Gamma-ray Novae: Rare or Nearby? P. J. Morris, G. Cotter, A. M. Brown & P. M. Chadwick

UNIVERSITY OF

Cataclysmic Variables (CVs): Novae Progenitors

- White dwarf with a secondary main sequence companion star
- The white dwarf is accreting mass from the secondary
- Eventually enough mass accumulates for a thermonuclear runaway to occur on the surface of the white dwarf. This is a nova event.

Artist's rendition of a white dwarf accumulating mass from a nearby companion star. This type of progenitor system would be considered singlydegenerate.

Image courtesy of David A. Hardy, © David A. Hardy/www.astroart.org.

Types of Nova

Nova	Classical	Recurrent	Dwarf
Timescale	10 ⁴⁻⁵ years	20-40 years	30-300 days
Factor increase in brightness	10 ⁶	10 ³	10
Magnitude change	12	8	6
Mechanism	Thermonuclear Runaway (TNR)	Combination of TNR & DI	Disk Instability (DI)

Carroll & Ostlie, 2007

V407 Cyg: The First Gamma-ray Nova

- Observed in gamma-rays during a classical nova outburst in 2010
- Unusual system as the secondary star is a pulsating Mira variable
- Gamma-rays were thought to be caused by interaction between the nova shell and dense Mira wind
- It was concluded that novae would not generally emit gamma-rays

Abdo et al. 2010

The $> 5\sigma$ Classical Novae

- With the exception of V407 Cyg, the novae are believed to have no unusual characteristics.
- The blue diamonds represent the time of the optical peak.

LAT

100 Me

AAVSO

V5668 Sor 2015

/1369 Cen 2013

10 , (10⁻⁷cm⁻²s⁻¹

Distances?

Nova	V407 Cyg 2010	V1324 Sco 2012	V959 Mon 2012	V339 Del 2013	
Distance (kpc)	2.7	4.5	3.6	4.2	
Peak magnitude	6.9	10.0	5*	4.3	
Peak date	10.80 Mar 2010	19.96 Jun 2012	_	16.50 Aug 2013	
Optical RA, Decl.	315.5409°, +45.7758°	267.7246°, -32.6224°	99.9108°, +5.8980°	305.8792°, +20.7681°	
Optical I, b	86.9826°, -0.4820°	357.4255°, -2.8723°	206.3406°, +0.0754°	62.2003°, -9.4234°	
LAT RA, Decl.	315.57°, +45.75°	267.72°, -32.69°	99.98°, +5.86°	305.91°, +20.78°	
Optical-LAT offset	0.03°	0.07°	0.08°	0.03°	
LAT error radius (95%)	0.08°	0.09°	0.18°	0.12°	
t _s (date)	10 Mar 2010	15 Jun 2012	19 Jun 2012	16 Aug 2013	
t _s (MJD)	55265	56093	56097	56520	
Duration (days)	22	17	22	27	
L, (10 ³⁵ erg s ⁻¹)	3.2	8.6	3.7	2.6	
Total energy (10 ⁴¹ erg)	6.1	13	7.1	6.0	

*For V959 Mon, the optical peak magnitude of 9.4 (unfiltered) was observed ~50 days after the initial γ -ray detection, and we adopted an inferred peak of 5 magnitude (9).

Ackermann et al. (2012)

Why Not Just Measure the Distances to multiple novae?

- Method 1: Novae as standardisable candles
 - Poor correlation
 - Affected by interstellar reddening
- Method 2: Resolving the nova shell
 - Accurate
 - Likely only able to resolve the shells of nearby novae.

What is the Nova Occurrence Rate? -Galactic Method

Advantages

 Based on Milky Way, hence novae more likely to represent Galactic population

Disadvantages

- Unable to see whole population due to location in the disc
- Reddening effects difficult to account for
- Galaxy may not be axis-symmetric
- Requires observations of the whole sky
- Relies on the assumption that novae are standardisable candles (Cohen, 1985)

 $N_{novae} = 35 \pm 11 \text{ yr}^{-1}$ Shafter (1997)

What is the Nova Occurrence Rate? -Extragalactic Method

Advantages

- Reddening roughly constant for all sources
- Sources approximately equidistant
- Can spatially sample a large fraction of the total population

Disadvantages

- Relies on scaling relations
- Ignores local effects
- Can be influenced by the relative inclination of the host galaxy

Novae in M31

- As the closest galaxy, M31 is a prime candidate for a nova survey.
- Spatial binning of novae in M31.
- Ellipses defined differently for bulge and disc regions.
- Data available online (http://www.mpe.mpg.de/~ m31novae/opt/m31/index.php)

Based on 176+86 (disc+bulge) Rband novae

Defining Milky Way properties -Well constrained parameters?

- Milky Way radius: Typically believed to be in the range 15-25 kpc
- Solar distance from the Galactic centre is well constrained to be close to 8 kpc
- The bulge/disc boundary is not well defined e.g. Carroll and Ostlie (2007)

Populating the Milky Way in 2D

- The axis of the Solar System to the Galactic centre was taken as $\phi = 20^{\circ}$ (Binney et al. 1997)
- We assume that novae are likely to be found within the thin disc of the milky way, such that $P(z) \propto \exp \frac{z}{z_d}$,
- where $z_d = 350$ pc is the characteristic scale height (e.g. Dawson & Johnson, 1994).

Populating the Milky Way: Bulge

• The below functions used to model bulge infra-red isophotes from Dwek et al. 1995 and Binney et al. 1997 were assessed for nova z production.

$$\rho_B = \rho_0 \frac{e^{-a^2/a_m^2}}{(1 + a/a_0)^{1.8}},$$
 (1a)

$$a = \left(x^2 + \frac{y^2}{y_0^2} + \frac{z^2}{z_0^2}\right)^{1/2},$$
 (1b)

$$\rho_1 = \rho_0 \exp(-0.5r^2),$$
(2a)

$$\rho_2 = \rho_0 r^{-1.8} \exp(-r^3), \qquad (2b)$$

$$\rho_3 = \rho_0 \exp(-r), \qquad (2c$$

where r is defined by,

$$r = \left[\left(\frac{x}{x_0}\right)^2 + \left(\frac{y}{y_0}\right)^2 + \left(\frac{z}{z_0}\right)^2 \right]^{\frac{1}{2}}, \quad (3)$$

Morris et al. (2017)

Reddening

- Model of Dawson and Johnson (1994), where $\alpha_{GC} = 9.4 m_V \text{ pc}^{-1}$, $r_d = 5 \text{kpc}$ and $z_d = 0.2 \text{ kpc}$

Galactic Novae Statistics

- List by Koji Mukai: <u>http://asd.gsfc.nasa.gov</u> /Koji.Mukai/novae/nova <u>e.html</u>
- In the first 8 years of LAT observations, 69 optically identified novae, 6 observed to > 5σ in gamma-rays
- Dimmest has $m_V \approx 17.5$

Assigning Gamma-ray Fluxes

nova	V407 Cyg	V1324 Sco	V959 Mon	V339 Del	V1369 Cen	V5668 Sgr
Peak daily flux, F_{γ} (10 ⁻⁷ ph s ⁻¹ m ⁻²)	13.9 ± 2.6	12.3 ± 2.9	13.8±3.7	5.9 ± 1.1	5.1±1.3	1.8±0.8
$F_{\gamma}/F_{GalDiff}$	0.254	0.185	0.305	0.381	0.0897	0.0704
TS value	56.8	35.0	27.7	65.7	37.6	11.6
Distance (kpc)	3.5 ± 0.3	4.3 ± 0.9	1.4 ± 0.4	3.2 ± 0.3	2.5	1.5 ± 0.2

For gamma-rays,

$$F_{\gamma}=rac{L_{\gamma}}{4\pi d^2}$$
 ,

• hence L_{γ} can be obtained for every source.

• As there is a very small sample size, a flat distribution was assumed between them, and used to assign gamma-ray fluxes to simulated novae.

Results

- Simulations were able to produce the observed percentage of ٠ gamma-ray detected novae
- Simulations return 5 \pm 2 gamma-ray novae for 68 \pm 12 optical • novae.
- The limiting factor is always the gamma-ray background and not ٠ optical visibility

Results

- The number of optical novae detected strongly depends on threshold magnitude
- The number of novae discovered in gammarays and optically is independent of this
- Therefore, the limiting factor is always the gamma-ray background and not optical visibility

Results

- Novae with $m_R > 12$ are unlikely to be observed in gammarays
- The same is true for novae at d > 8 kpc, though at this distance we can realistically only expect to observe gamma-ray bright novae.

New Gamma-ray Novae

- V5856 Srg (Li et al., 2016, 2017) has a gamma-ray peak of 9.7×10^{-7} ph s⁻¹ cm⁻², a distance of 4.2 kpc and V band peak of 5.4
- Two more gamma-ray novae, V5855 Sgr and V407 Lup have also been detected (Li & Chomiuk, 2016; Cheung et al., 2016) though as of yet they have no distance estimates.

Conclusions

- Novae with $m_R > 12$ are unlikely to be observed in gamma-rays.
- We expect all gamma-ray detected novae do occur within a distance $d < 8 \ \rm kpc$
- The gamma-ray sky background is the greatest inhibition to the discovery of gamma-ray novae.
- The Fermi LAT has detected most, if not all, gamma-ray novae that occur in locations not dominated by the gamma-ray sky background.
- All classical novae are sources of gamma-rays, and their apparent rarity is a consequence of us only being able to detect a nearby sub-sample.