The most primitive meteorites, chondrites, preserve records of the prehistory and early history of our Solar System. The chondrites are composed of three basic components: chondrules and refractory inclusions set in a fine-grained matrix. Chondrules and refractory inclusions formed at high temperatures in the solar nebula. The fine-grained matrix also contains products of high temperature...
Complex organic molecules are detected in gas and solid phases of astrophysical objects. The origin of these molecules is still debated, but a large part is supposed to form at the surface of astrophysical icy grains. These icy grains that can be observed in dense molecular clouds are processed under high energetic processes (VUV photons, ions, electrons) during the star formation. Processing...
Comet 67P/Churyumov–Gerasimenko has been studied with unique in situ measurements by various instruments aboard the Rosetta spacecraft. Data from ROSINA, COSAC, VIRTIS and MIRO have shown that the comet has a rich molecular inventory and that there is a complex relationship between production rates and correlations between various species. The currently available data on 67P/C-G is one of the...
The landing of the ROSETTA module Philae in 2014 kicked up a lot of dust, figuratively as well as literally. The not-quite-as-planned landing displaced about 0.4 m3 of dust[1], some of which ended up in the COSAC instrument[2], where it warmed to around 20°C, releasing its volatiles. Although the COSAC instrument could never play out its full potential, it did...
Simple and complex species are expected to be formed in a variety of interstellar environments at the surface of ice grains by means of a combination of processes. Interstellar ice mantles are continuously exposed to energetic and non-energetic processing by photons, electrons, ions and atoms in different regions of the interstellar medium. Here I will focus on the chemical role of electrons...
The icy worlds in our Solar System (e.g. Europa, Enceladus, Ceres, Triton and Titan) possess surface organics, and possibly subsurface oceans, so are prime astrobiological targets in the search for Life. Space missions to these icy worlds have been the key to measuring their surface composition and assessing their subsurface composition through measurements of their outgassing plumes....
Phosphorus (P) is a key chemical biogenic element for the development of life[1,2,3,4], because P-compounds are unique to form large biomolecules such as deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), phospholipids (the structural components of all cellular membranes) and the adenosine triphosphate (ATP) molecule, from which all forms of life assume energy. Despite the critical...