Description
observations, theories and experiments will be presented in this session, with the aim of linking the various steps in the process of star and planet formation and unveil the chemical evolution
Until recently, it was thought that the production of larger interstellar molecules proceeds by definite chemistries depending upon the physical conditions of the source. For cold and pre-stellar cores at 10 K, it was thought that ion-molecule processes dominate the large molecule chemistry and lead to the production of very unsaturated carbon-chain type species. For hot cores, it was...
The high-mass star-forming core G31.41+0.31 is one of the most chemically rich hot molecular cores in the Galaxy. In particular, the first detection outside the Galactic Center of the simplest sugar-like species, glycolaldehyde, has been obtained towards G31, and heavy complex molecules such as methyl formate, ethanol or ethylene glycol have also been observed. The chemical complexity of this...
Cyanopolyynes are carbon chains delimited at their two extremities by an atom of hydrogen and a cyano group, hence they could be excellent reservoirs of carbon. The simplest member, HC3N, is ubiquitous in the galactic interstellar medium, and it is detected also in external galaxies. Because of their potential to form (macro-)molecules of biogenic importance, understanding the growth of...
In the last 50 years of astrochemical research, the realm of one-dimensional carbon chemistry (i.e. carbon chain molecules) has been well explored. Life, however, relies on two and three-dimensional carbon - branches, rings, bridges, and so forth. Here, we present the first rotational detection of a six-membered ring molecule in the interstellar medium (ISM), benzonitrile (c-C$_6$H$_5$CN),...
Pre-stellar cores represent the initial conditions of Solar-system formation. In the past, these gravitationally collapsing condensations were believed to present a simple chemistry characterised by severe freezing-out of carbon-bearing species in their densest and coldest, innermost regions. However, thanks to the advent of higher-sensitivity instrumentation, it has become clear that...
The role of the pre-solar chemistry in the present chemical composition of the Solar System bodies is far to be understood. The molecular complexity builds up at each step of the process leading to star formation, starting from simple molecules and ending up in interstellar Complex Organic Molecules (iCOMs). It is of paramount importance to image the spatial distribution of iCOMs in order to...
Abstract
Comets are thought to contain relatively pristine material from the origin of the solar system, having condensed directly out of the pre-solar nebula (e.g., Mumma & Charnley 2011). It is postulated that comets may have even delivered some of the water and organic matter found on the Earth via impacts (e.g., Hartogh et al. 2011). Over 22 molecules have been identified in...
Complex molecules are commonly detected in high- and low-mass star
forming regions. In the past years, however, complex species have been
detected in unexpected environments like photo-dominated regions
(PDRs). The great sensitivity and resolution power of ALMA has also
allowed us to start detecting and resolving complex species in
protopanetary disks.
I will show recent observations...
The harsh radiation environment of disk surfaces is thought to be inhospitable to organic molecules. Indeed, the disk surface is sweltering atomic gas of several thousand Kelvin, well in excess of the dust temperature. However, as radiation is shielded by increasing column densities of dust the potential for molecules to form increases as both the photodissociation rates and temperatures...