Speaker
Description
One major unresolved question in the origin of life is the autonomous synthesis of nucleotides. Recent chemical advances have thrown light upon potential synthetic pathways for the production of nucleotides in the laboratory, starting from simple precursors [1]. However, so far the original experiments were performed in bulk chemistry, and the synthetic steps successively one by one, independently of each other. Therefore, the geological plausibility of such a scenario remains unexplored.
We will present advances in our study of the synthesis of activated nucleotides under emulated conditions of laminar, microfluidic flow in rocks pores, driving all the reactions under one single system sequentially and uninterruptedly. We have developed 3D-printed microfluidic devices to run the RNA synthesis autonomously and to recreate a scenario analogous to what could be found in porous volcanic rocks under evaporation settings. The flow is presently driven by peristaltic pumps, but our ongoing work aims to test the limits at which the reactions can be driven spontaneously by gravity or evaporation. We use finite-element modelling to design and test our microfluidic systems. Our methodology enables us to embed rock powders into the microfluidic systems, further increasing the geological plausibility of our tested scenarios and opening the door to studies of any other scenarios for the emergence of life.
[1] Powner, M. W., Gerland, B., & Sutherland, J. D. (2009). Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature, 459(7244), 239.