Speaker
Description
Extraterrestrial ices are observed in many astrophysical environments linked to the formation of stars and planetary systems but also disks and various debris such as comets and asteroids. The chemical evolution of these ices following photo- and thermo-chemistry is routinely simulated in the laboratory. These simulations always end with the building up and recovery at room temperature, of organic residues. These residues, soluble in water, show the presence of many “molecular bricks of life” such as amino acids, nucleobases and sugars, including ribose, a key constituent of RNA. The similarities of these residues with organic materials in meteorites suggest a possible astrophysical scenario for the origin of organics in their parent bodies. Furthermore, the delivery of these organics onto the primitive Earth, or other telluric planets, may be important, if not essential, for the start-up, in some specific environment, of a prebiotic chemistry that may be considered as a far equilibrium evolving chemical system that may be simulated in the laboratory.