

N. Carrasco and B. Fleury

ORGANIC CHEMISTRY IN THE ATMOSPHERE OF THE EARLY EARTH

Prebiotic molecules in Space and Origins of Life on Earth 664. Wilhelm und Else Heraus-Seminar. Bad Honnef

When life appears on Earth Key for success: ocean + organic molecules

When life appears on Earth Key for success: ocean + organic molecules

Late Heavy Bombardment →Late Veneer? Volatiles are possibly added during this period

When life appears on Earth Key for success: ocean + organic molecules

- Environmental conditions at this epoch?
- Role of the atmospheric chemistry & the primitive soup theory?

Oparin, 1924

Experimental simulation of the early Earth atmosphere

• Experiment by Miller&Urey (1953)

Primitive atmosphere expected to be made of CH_4 , NH_3 , H_2O , H_2

=Analogy with giant planets @time before H₂ excape

Experimental simulation of the early Earth atmosphere

• Experiment by Miller&Urey (1953)

Experimental simulation of the early Earth atmosphere

• Experiment by Miller&Urey (1953)

Massive escape of the proto-atmosphere

Degassed steam

→No more primitive reduced atmosphere

Artist view of the cataclysmic impact that formed the Moon

Reconstruction of a 2^{ndary} atmosphere

1. Magma ocean:

Ingassing process through gas-solubility equilibrium \rightarrow capture of a small portion of the primitive atmosphere

Constant meteoritical Protoatmosphere + degassed steam Magma ocean Core Gas solubility equilibrium Ingassing / outgassing Carbon storage Jaco

Jacobsen+ 2008 Dasgupta 2013

Reconstruction of a 2^{ndary} atmosphere

2. Outgassing during Hadean eon: formation of the ocean and the atmosphere

Depending on the oxydation state of the mantle, the degassed atmosphere can be either reduced or oxydized

Reconstruction of a 2^{ndary} atmosphere

2. Outgassing during Hadean eon: formation of the ocean and the atmosphere

Hadean oxygen fugacity similar as in present day mantle (Tail et al. 2011)

Organic chemistry in an oxydized atmosphere in the Hadean eon?

- High atmosphere submitted to harsh UV photons
- Example of unsuspected chemical growth in Titan thermosphere (talk by N. Balucani)

Experimental simulation of the chemistry in the early Earth high atmosphere

Benjamin Fleury, PhD thesis, 2015

RF Plasma discharge: e- as proxys for FUV photons Gas mixture: $N_2 - CO_2 - H_2$ 91 - 5 - 4% P=1 mbar, neutrals and ions at room temperature

Cryogenic trapping of the gas products

- Cooling of the electodes by a regulated LN₂ circulation: T=173K
- Accumulation of gas products
- After 2 hrs of running experiment
 - Vacuum pumping
 - isolation of the reactor
 - Slow warming
- \rightarrow 2 mbar of products

Main product : Water !

Analysis by mid-IR spectroscopy

- Formation of O(1D) from CO_2 $CO_2 + e^- \rightarrow CO + O(^1D) + e^ CO_2 + e^- \rightarrow CO_2^+ + 2 e^ CO_2^+ + e^- \rightarrow CO + O(1D)$
- Formation of OH radicals $H_2 + O(^1D) \rightarrow OH + H$
- Production of water $H_2 + OH \rightarrow H_2O + H$ $2 OH \rightarrow H_2O + O$

Fleury, Carrasco et al., ApJL, 2015

Unsuspected water formation at high altitude

Fleury, Carrasco et al., ApJL, 2015

Analysis by in situ mass spectrometry

Detection of gas phase products up to C4 \rightarrow CO₂ enables organic growth

Fleury, Carrasco et al., EPSL 2017

Analysis by in situ mass spectrometry

- Identifications by mid-IR spectroscopy & GCMS
- Importance for prebiotic chemistry
 - Strecker synthesis (amino acids): NH₃, HCN, HCHO
 - Formation of adenine (nucleic basis): HCN

Fleury, Carrasco et al., EPSL 2017

Production of solid organic material!

IR absorption spectra of the films deposited on 2 substrates in a $N_2 / CO_2 / H_2$ plasma (86 / 10 / 4%). Plasma duration = 40h

Fleury, Carrasco et al., EPSL 2017

Oxydized organic films: UV aborbers

Gavilan, Broch, Carrasco et al. ApJL, 2017

Conclusion :

The upper atmosphere of the CO_2 -rich early Earth as an unsuspected source for water ice and organic molecules

- Small molecules in the gas phase: NH3, HCN
- Ubiquitous and permanent during the Hadean eon
- Not to be neglected compared to exogeneous sources

