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Comets and meteorites: messengers of ISM chemistry?
I in-situ exploration of comet 67P/Churyumov-Gerasimenko by Rosetta
⇒ detection of organic molecules known in the ISM,

but also new ones:

Goesmann+ 2015

Goesmann+ 2015

I methyl isocyanate CH3NCO

(Philae/COSAC, Goesmann+ 2015)

→ detected in the ISM shortly after, as soon
as spectroscopic predictions were available!
(Halfen+ 2015, Cernicharo+ 2016)

→ but comet detection not confirmed!
(Altwegg+ 2017)

I glycine NH2CH2COOH (ROSINA, Altwegg+ 2016),
confirming detection in samples returned
from comet Wild 2 (Stardust, Elsila+ 2009)

I > 80 amino acids found in meteorites, with isotopic composition and
racemic distribution suggesting extraterrestrial origin (e.g., Botta & Bada 2002)

⇒ is molecular complexity of comets/meteorites a widespread outcome of
interstellar chemistry? What is the degree of chemical complexity in the ISM?
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Molecules in the interstellar medium

(http://www.cdms.de/)

I 207 molecules detected in the ISM or in
circumstellar envelopes
over 8 decades (1937–2018)
(only 3 before 1963)

I on average since 1963 (radio astronomy),
about 7 new molecules every 2 years

I 12 new detections in 2017–2018!

I complex molecules (for astronomers): ≥ 6 atoms (Herbst & van Dishoeck 2009)

I one third of detected molecules are complex

I all detected complex molecules are organic (COMs)

⇒ where are COMs found in the interstellar medium?
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COMs in various interstellar environments
I hot cores/corinos (> 100 K): e.g., Sgr B2, Orion KL, IRAS 16293, NGC 1333-IRAS 4A

(e.g., Snyder+ 1994, Ziurys+ 1993, Cazaux+ 2003, Bottinelli+ 2004)

I lukewarm corinos (∼30 K, warm carbon-chain chemistry): e.g., L1527, L483

(e.g., Sakai+ 2008, Hirota+ 2009)

I shocked regions: e.g., CMZ clouds, L1157 outflow, IRAS 20126+4104 outflow

(e.g., Requena-Torres+ 2006, Arce+ 2008, Palau+ 2017)

I photodissociation regions: e.g., Horsehead, Orion Bar

(e.g., Guzmán+ 2014, Cuadrado+ 2017)

I cold, quiescent regions (∼10 K): e.g., TMC 1, B1-b, L1689B, L1544

(e.g., Suzuki+ 1986, Öberg+ 2010, Bacmann+ 2012, Vastel+ 2014)

I diffuse/translucent clouds (low densities): galactic and extragalactic

(e.g., Turner 1998, Muller+ 2011, Corby+ 2015, Thiel+ 2017, Liszt+ 2018)

I protoplanetary disks: e.g., MWC 480, TW-Hya, V4046 Sgr

(e.g., Öberg+ 2015, Walsh+ 2016, Bergner+ 2018)

I circumstellar envelopes around evolved stars: e.g., CRL 618, IRC+10216

(e.g., Bujarrabal+ 1988, Cernicharo+ 2000)

⇒ how do COMs form in the interstellar medium?



Complex organic molecules in the ISM Molecules in the ISM 6 / 24

COMs in various interstellar environments
I hot cores/corinos (> 100 K): e.g., Sgr B2, Orion KL, IRAS 16293, NGC 1333-IRAS 4A

(e.g., Snyder+ 1994, Ziurys+ 1993, Cazaux+ 2003, Bottinelli+ 2004)

I lukewarm corinos (∼30 K, warm carbon-chain chemistry): e.g., L1527, L483

(e.g., Sakai+ 2008, Hirota+ 2009)

I shocked regions: e.g., CMZ clouds, L1157 outflow, IRAS 20126+4104 outflow

(e.g., Requena-Torres+ 2006, Arce+ 2008, Palau+ 2017)

I photodissociation regions: e.g., Horsehead, Orion Bar

(e.g., Guzmán+ 2014, Cuadrado+ 2017)

I cold, quiescent regions (∼10 K): e.g., TMC 1, B1-b, L1689B, L1544
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Processes building up chemical complexity in the ISM

I gas phase chemistry: mainly driven by ions

I grain surface chemistry: mainly driven by radicals produced by energetic
photons or cosmic rays

I hot-core models: warm-up phase increases mobility of radicals and
promotes their recombination to form COMs before desorption
(e.g. Garrod+ 2008)

I COMs in prestellar cores at low temperature (Öberg+ 2010, Bacmann+ 2012):
I reactive desorption of COM precursors followed by radiative

association? (Vasyunin & Herbst 2013b)
I cosmic-ray induced radical diffusion? (Reboussin+ 2014)
I non-thermal desorption in core outer layers? (Vastel+ 2014, Bizzocchi+ 2014)
I revision/expansion of gas-phase reaction network? (Balucani+ 2015)

How to make progress? (gas phase vs. grain surface? relevant reactions? reaction rates?)

⇒ interplay between observations, astrochemical modeling, and experiments
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The high mass star-forming region Sgr B2

Central Molecular Zone at 870 µm

(ATLASGAL/LABOCA + Planck c© MPIfR/A. Weiß)

Sgr B2(N) in thermal dust emission

at 850 µm (SMA, Qin et al. 2011)

I one of the most prominent star-forming
regions in our Galaxy
(∼107 M� in ∼40 pc diameter, Lis+ 1990)

I about 100 pc from Galactic Center

I contains two dense clumps (N and M)
that host clusters of UC H II regions

Sgr B2(N)

I two main hot cores (N1 and N2)

(+ fainter ones: Bonfand+ 2017, Sánchez-Monge+ 2017)

I very high column densities
(NH2 ∼ 1024–1025 cm−2 over few arcsec)

⇒ key advantage for COM detection!
(many COMs were first detected toward Sgr B2)
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The EMoCA survey: angular resolution matters!

I 3 mm spectral line survey of Sgr B2(N) in Cycles 0 and 1 (84 – 114 GHz)

to search for new COMs and test astrochemical models

850 µm (SMA, Qin+ 2011)

I angular resolution of EMoCA: 1.6′′ (13 000 au)

⇒ sufficient to separate Sgr B2(N1) and (N2):

Sgr B2(N2) has narrow linewidths! (5 km s−1)
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Tentative detection of N-methylformamide
(Belloche et al. 2017, A&A, 601, A49)

I methyl isocyanate (CH3NCO) detected in Sgr B2(N), Orion KL, and
IRAS 16293 (Halfen+ 2015, Cernicharo+ 2016, Ligterink+ 2017)

I N-methylformamide (CH3NHCHO):
structural isomer of acetamide (CH3C(O)NH2)

I accurate spectroscopic predictions of CH3NHCHO from Kharkiv/Lille

I 5 lines of Sgr B2(N2) assigned to CH3NHCHO

⇒ tentative detection

I observed abundance ratios in Sgr B2(N2):
[CH3NHCHO] / [CH3NCO] ∼ 0.5
[CH3NHCHO] / [CH3C(O)NH2] ∼ 0.7
[CH3NHCHO] / [NH2CHO] ∼ 0.03
[CH3NHCHO] / [HNCO] ∼ 0.05

I chemical modeling with MAGICKAL (R. Garrod) supports tentative detection
(radical addition reaction CH3+NHCHO or CH3NH+HCO, or hydrogenation of CH3NCO)
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Detection of a branched alkyl molecule
(Belloche et al. 2014, Science, 345, 1584)
(Garrod et al. 2017, A&A, 601, A48)

I detection toward Sgr B2(N2) of
i-C3H7CN, branched form of n-C3H7CN

I i-C3H7CN nearly as abundant as n-C3H7CN ([i-C3H7CN] / [n-C3H7CN] = 0.4)

I [i-C3H7CN] / [n-C3H7CN] well reproduced by hot-core chemical model MAGICKAL

(Garrod+ 2017, first inclusion of branched alkyl molecules in a reaction network!)

⇒ new domain in structures available to the chemistry of star-forming regions

I amino acids in meteorites: branched isomers even dominate over
straight-chain ones (e.g., Cronin & Pizzarello 1983)

⇒ detection of i-C3H7CN establishes further link between
chemical composition of meteorites and interstellar chemistry
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The CALYPSO survey

Continuum And Lines in Young ProtoStellar Objects

I Large Program with IRAM Plateau de Bure interferometer (now NOEMA) +
30 m single-dish telescope for short spacings (PI: Ph. André)

I main goal: shed light on formation process of protostellar disks and multiple
systems, to contribute to solving the angular momentum problem

I source sample: 16 of the closest Class 0 protostars (d < 420 pc)

I diagnostics: continuum and line observations at ∼100–200 au resolution
to derive physical and chemical structure of protostellar envelopes

I strategy: 3 setups (at 1.3, 1.4, and 3 mm) targetting specific molecular lines at
high spectral resolution, + wide-band backends
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I main goal: shed light on formation process of protostellar disks and multiple
systems, to contribute to solving the angular momentum problem

I source sample: 16 of the closest Class 0 protostars (d < 420 pc)

I diagnostics: continuum and line observations at ∼100–200 au resolution
to derive physical and chemical structure of protostellar envelopes

I strategy: 3 setups (at 1.3, 1.4, and 3 mm) targetting specific molecular lines at
high spectral resolution, + wide-band backends



Chemical composition of protostars with NOEMA CALYPSO 14 / 24

The CALYPSO survey

Continuum And Lines in Young ProtoStellar Objects

I Large Program with IRAM Plateau de Bure interferometer (now NOEMA) +
30 m single-dish telescope for short spacings (PI: Ph. André)

I main goal: shed light on formation process of protostellar disks and multiple
systems, to contribute to solving the angular momentum problem

I source sample: 16 of the closest Class 0 protostars (d < 420 pc)

I diagnostics: continuum and line observations at ∼100–200 au resolution
to derive physical and chemical structure of protostellar envelopes

I strategy: 3 setups (at 1.3, 1.4, and 3 mm) targetting specific molecular lines at
high spectral resolution, + wide-band backends



Chemical composition of protostars with NOEMA CALYPSO 15 / 24

Properties of CALYPSO sources

(Courtesy A. Maury, based on André+ 2008, Maury+ 2009)

I sources in Taurus, Perseus,
Aquila, Serpens South, and
Serpens Main (140–415 pc)

I large spread in age,
luminosity, and envelope
mass (→ final stellar mass)

⇒ representative of
whole population of
Class 0 protostars

I a few Class I objects present
in some CALYPSO fields
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Complex organic molecules in Class 0 protostars

I presence of COMs in some Class 0 protostars well established
(e.g., IRAS 16293-2422: Cazaux+ 2003, Jørgensen+ 2016; NGC 1333-IRAS4A/4B/2A:

Bottinelli+ 2004, 2007)

I origin of COMs in Class 0 protostars debated:
I hot inner region of the envelope (hot corino, Bottinelli+ 2004)

I impact of outflow (shear zones, UV irradiation through cavity; Blake+ 1995,

Öberg+ 2011, Drozdovskaya+ 2015)

I warm layer/atmosphere of accretion disk (Jørgensen+ 2005, Lee C.-F.+ 2017)

I need for:
I high angular resolution (< 1′′)

I large sample of sources to investigate dependence on mass,
luminosity, evolutionary stage

⇒ CALYPSO survey well suited to explore origin of COMs
in Class 0 protostars on a statistical basis
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NOEMA spectra of Calypso sources
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COMs in Calypso sources: line counts
Maps of number of channels with line emission above 6σ (δv∼2.6 km s−1)

(within 216.8–220.5 and 229.2–232.8 GHz, excluding CO, 13CO, C18O, SiO, SO, OCS)

I 6 sources with clear
“hot-corino” signature
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COM composition of CALYPSO sources
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Three types of COM composition?
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Correlations between COMs

I whatever type of normalization,
correlation found for:
CH3CN & CH3OCH3,
CH3CN & CH3OH,
NH2CHO & CH3OH,
CH3CHO & CH3OCHO

...

⇒ correlation does not imply chemical
link between species!
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Correlation with source properties?

I no obvious correlation between
(normalized) COM column densities and
envelope mass Menv, internal luminosity
Lint, or Menv/Lint (evolutionary tracer)...

⇒ COM composition not an evolutionary
indicator during accretion phase?

or Menv/Lint not an evolutionary tracer?

I ...except for anticorrelation between Lint
and abundances of CH2(OH)CHO, CH3CHO,
and C2H5OH relative to methanol

⇒ chemical complexity reduced
when UV radiation stronger?
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Outlook
COMs in Class 0 protostars
I COM composition does not seem to be an evolutionary indicator

→ due to episodic accretion?

Branched molecules
I do branched isomers dominate in star-forming regions?
→ test of model predictions with ALMA: on-going search for C4H9CN (4 isomers)

Exploring molecular complexity: how to beat the confusion limit?
I go to lower frequencies: ALMA bands 1 and 2, ngVLA, SKA?

(see also PRIMOS spectral survey of Sgr B2(N) with GBT, PI: A. Remijan)

I target sources with narrower linewidths
(see, e.g., PILS spectral survey of hot corino IRAS 16293-2422 with ALMA, PI: J. Jørgensen;
detection of CH3OCH2OH in NGC 6334I-MM1, McGuire+ 2017)
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