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Complex organic molecules in the ISM Comets and meteorites 4/24
Comets and meteorites: messengers of ISM chemistry?

> in-situ exploration of comet 67P/Churyumov-Gerasimenko by Rosetta
= detection of organic molecules known in the ISM,

Table 1. The 16 molecules used to fit the COSAC mass spectrum.

Molar MS Relative to

== Lo mass(u) fraction  water
Water H:0 18 80.92 100
Methane CH, 16 070 a5
Methanenitrile (hydrogen cyanide) HCGN 27 106 09
Carbon monoxide co 28 109 [
CHaNHz 3l 119 a6
CH,CN a1 0.55 03
Isocyanic acid HNCO 43 047 03
Ethanal CH,CHO a4 101 05
HCONHz 45 373 L8
C_HyNH; 45 072 a3
(methyl CH4NCO 57 313 13
CH4COCH, 58 102 03
Propanal CzHsCHO 58 044 01
CHsCONH2 59 2.20 o7
2 & CH,OHCHO 60 098 a4
1.2-Ethanediol (ethylene glycol) CHA{OH)CH,(OH) 62 079 a2

Goesmann+ 2015
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> in-situ exploration of comet 67P/Churyumov-Gerasimenko by Rosetta
= detection of organic molecules known in the ISM, but also new ones:

» methyl isocyanate CH;NCO
(Philae/COSAC, Goesmann+ 2015)

Tabls L The 16 molecules used to fit the COSAC mass spectrum.
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> in-situ exploration of comet 67P/Churyumov-Gerasimenko by Rosetta
= detection of organic molecules known in the ISM, but also new ones:

Table L The 16 molecules used to fit the COSAC mass spectrum. » methyl isocyanate CHSNCO
o s ettt (Philae/COSAC, Goesmann+ 2015)

re LoD mass (u) fraction  water .
. e p ww — detected in the ISM shortly after, as soon
e o —— — as spectroscopic predictions were available!
= = (Halfen+ 2015, Cernicharo+ 2016)
e B S
cu,::or.:u, 58 102 63
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e CHaCON S 2] a2
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Comets and meteorites: messengers of ISM chemistry?

> in-situ exploration of comet 67P/Churyumov-Gerasimenko by Rosetta
= detection of organic molecules known in the ISM, but also new ones:

Table L The 16 molecules used to fit the COSAC mass spectrum. » methyl isocyanate CHSNCO
por NS Raets (Philae/COSAC, Goesmann+ 2015)

mass (u) fraction _ water

Name Formula

= m o e m — detected in the ISM shortly after, as soon
S o —— — as spectroscopic predictions were available!
et e (Halfen+ 2015, Cernicharo+ 2016)
TR . )
Eo ] (e " — but comet detection not confirmed!
P = O 2 % (Altwegg+ 2017)
:"Mrmﬁfn-l iycolaidshyde) ::m:; - :
12 Ethanediol (ethylene glycol)  CH(OH)CH.(OH) 79 2

Goesmann+ 2015
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Comets and meteorites: messengers of ISM chemistry?

> in-situ exploration of comet 67P/Churyumov-Gerasimenko by Rosetta
= detection of organic molecules known in the ISM, but also new ones:

e — » methyl isocyanate CH3;NCO

— s (Philae/COSAC, Goesmann+ 2015)
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Goesmanns 2015 confirming detection in samples returned

from comet Wild 2 (Stardust, Elsila+ 2009)
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Comets and meteorites: messengers of ISM chemistry?

> in-situ exploration of comet 67P/Churyumov-Gerasimenko by Rosetta
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» > 80 amino acids found in meteorites, with isotopic composition and
racemic distribution suggesting extraterrestrial origin (e.g., Botta & Bada 2002)
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Comets and meteorites: messengers of ISM chemistry?

> in-situ exploration of comet 67P/Churyumov-Gerasimenko by Rosetta
= detection of organic molecules known in the ISM, but also new ones:

» methyl isocyanate CH;NCO
(Philae/COSAC, Goesmann+ 2015)

Tabls L The 16 molecules used to fit the COSAC mass spectrum.

Molar  MS  Relativeto

Name Formula mass (u) fraction _ water

= B e me — detected in the ISM shortly after, as soon
S o —— — as spectroscopic predictions were available!
e o R— e — (Halfen+ 2015, Cernicharo+ 2016)

B el = = = — but comet detection not confirmed!

= B " (Altwegg+ 2017)

u“;:‘""“":‘r:"‘m'”,‘" ,fﬁ..m.., > glycine NH,CH,COOH (ROSINA, Altwegg+ 2016),

confirming detection in samples returned
from comet Wild 2 (Stardust, Elsila+ 2009)

Goesmann+ 2015

» > 80 amino acids found in meteorites, with isotopic composition and
racemic distribution suggesting extraterrestrial origin (e.g., Botta & Bada 2002)

= is molecular complexity of comets/meteorites a widespread outcome of
interstellar chemistry? What is the degree of chemical complexity in the ISM?
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Molecules in the interstellar medium

Number of known interstellar molecules
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» 207 molecules detected in the ISM or in
circumstellar envelopes
over 8 decades (1937-2018)
(only 3 before 1963)
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Molecules in the interstellar medium

Number of known interstellar molecules
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Molecules in the interstellar medium

» 207 molecules detected in the ISM or in
circumstellar envelopes
over 8 decades (1937-2018)
(only 3 before 1963)

» on average since 1963 (radio astronomy),
>13 about 7 new molecules every 2 years

Number of constituent atoms

(http:/iwww.cdms.de/) » 12 new detections in 2017-2018!
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» all detected complex molecules are organic (COMs)
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Molecules in the interstellar medium

» 207 molecules detected in the ISM or in
circumstellar envelopes
over 8 decades (1937-2018)
(only 3 before 1963)

Number of molecules

» on average since 1963 (radio astronomy),
R 0 13 >13 about 7 new molecules every 2 years

Number of constituent atoms

(http:/iwww.cdms.de/) » 12 new detections in 2017-2018!

» complex molecules (for astronomers): > 6 atoms (Herbst & van Dishoeck 2009)
» one third of detected molecules are complex

» all detected complex molecules are organic (COMs)

= where are COMs found in the interstellar medium?
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COMs in various interstellar environments
> hot cores/corinos (> 100 K): e.g., Sgr B2, Orion KL, IRAS 16293, NGC 1333-IRAS 4A
(e.g., Snyder+ 1994, Ziurys+ 1993, Cazaux+ 2003, Bottinelli+ 2004)

> lukewarm corinos (~30 K, warm carbon-chain chemistry): e.g., L1527, L483
(e.g., Sakai+ 2008, Hirota+ 2009)
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COMs in various interstellar environments

hot cores/corinos (> 100 K): e.g., Sgr B2, Orion KL, IRAS 16293, NGC 1333-IRAS 4A
(e.g., Snyder+ 1994, Ziurys+ 1993, Cazaux+ 2003, Bottinelli+ 2004)

lukewarm corinos (~30 K, warm carbon-chain chemistry): e.g., L1527, L483
(e.g., Sakai+ 2008, Hirota+ 2009)
shocked regions: e.g., CMZ clouds, L1157 outflow, IRAS 20126+4104 outflow
(e.g., Requena-Torres+ 2006, Arce+ 2008, Palau+ 2017)
photodissociation regions: e.g., Horsehead, Orion Bar
(e.g., Guzman+ 2014, Cuadrado+ 2017)
cold, quiescent regions (~10K): e.g., TMC 1, B1-b, L1689B, L1544
(e.g., Suzuki+ 1986, Oberg+ 2010, Bacmann+ 2012, Vastel+ 2014)
diffuse/translucent clouds (low densities): galactic and extragalactic
(e.g., Turner 1998, Muller+ 2011, Corby+ 2015, Thiel+ 2017, Liszt+ 2018)
protoplanetary disks: e.g., MWC 480, TW-Hya, V4046 Sgr
(e.g., (")berg+ 2015, Walsh+ 2016, Bergner+ 2018)
circumstellar envelopes around evolved stars: e.g., CRL 618, IRC+10216
(e.g., Bujarrabal+ 1988, Cernicharo+ 2000)
= how do COMs form in the interstellar medium?
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Processes building up chemical complexity in the ISM
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» gas phase chemistry: mainly driven by ions

» grain surface chemistry: mainly driven by radicals produced by energetic
photons or cosmic rays

» hot-core models: warm-up phase increases mobility of radicals and

promotes their recombination to form COMs before desorption
(e.g. Garrod+ 2008)

» COMs in prestellar cores at low temperature (Oberg+ 2010, Bacmann+ 2012):
» reactive desorption of COM precursors followed by radiative
association? (Vasyunin & Herbst 2013b)
» cosmic-ray induced radical diffusion? (Reboussin+ 2014)
non-thermal desorption in core outer layers? (Vastel+ 2014, Bizzocchi+ 2014)
> revision/expansion of gas-phase reaction network? (Balucani+ 2015)
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Processes building up chemical complexity in the ISM

» gas phase chemistry: mainly driven by ions

» grain surface chemistry: mainly driven by radicals produced by energetic
photons or cosmic rays
» hot-core models: warm-up phase increases mobility of radicals and

promotes their recombination to form COMs before desorption
(e.g. Garrod+ 2008)

» COMs in prestellar cores at low temperature (Oberg+ 2010, Bacmann+ 2012):
» reactive desorption of COM precursors followed by radiative
association? (Vasyunin & Herbst 2013b)
» cosmic-ray induced radical diffusion? (Reboussin+ 2014)
> non-thermal desorption in core outer layers? (Vastel+ 2014, Bizzocchi+ 2014)
> revision/expansion of gas-phase reaction network? (Balucani+ 2015)

How to make progress? (gas phase vs. grain surface? relevant reactions? reaction rates?)

= interplay between observations, astrochemical modeling, and experiments
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The high mass star-forming region Sgr B2

» one of the most prominent star-forming
regions in our Galaxy
(~107 Mg, in ~40 pc diameter, Lis+ 1990)

» about 100 pc from Galactic Center

Central Molecular Zone at 870 yum
(ATLASGAL/LABOCA + Planck © MPIfR/A. WeiB)

» contains two dense clumps (N and M)
that host clusters of UC H Il regions
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The high mass star-forming region Sgr B2

» one of the most prominent star-forming
regions in our Galaxy
(~107 Mg, in ~40 pc diameter, Lis+ 1990)
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Central Molecular Zone at 870 yum
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that host clusters of UC H Il regions
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» two main hot cores (N1 and N2)
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» very high column densities
(Ni, ~ 10%4-102% cm~2 over few arcsec)
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Sgr B2(N) in thermal dust emission
at 850 um (SMA, Qin et al. 2011)



Exploring molecular complexity with ALMA Sagittarius B2 9/24

The high mass star-forming region Sgr B2

» one of the most prominent star-forming
regions in our Galaxy
(~107 Mg, in ~40 pc diameter, Lis+ 1990)

» about 100 pc from Galactic Center

Central Molecular Zone at 870 yum

> N
(ATLASGAL/LABOCA + Planck © MPIfR/A. Weif3) contains two dense ClUmpS (N and M)

that host clusters of UC H Il regions

Sgr B2(N)

» two main hot cores (N1 and N2)
& (+ fainter ones: Bonfand+ 2017, Sanchez-Monge+ 2017)

» very high column densities
(Ni, ~ 10%4-102% cm~2 over few arcsec)

Sgr B2(N) in thermal dust emission = key advantage for COM detection!
at 850 um (SMA, Qin et al. 2011)

(many COMs were first detected toward Sgr B2)
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The EMoCA survey: angular resolution matters!

» 3 mm spectral line survey of Sgr B2(N) in Cycles 0 and 1 (84 — 114 GHz)
to search for new COMs and test astrochemical models
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» 3 mm spectral line survey of Sgr B2(N) in Cycles 0 and 1 (84 — 114 GHz)
to search for new COMs and test astrochemical models

» angular resolution of EMoCA: 1.6” (13000 au)
= sufficient to separate Sgr B2(N1) and (N2):

850 um (SMA, Qin+ 2011)
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The EMoCA survey: angular resolution matters!

3 mm spectral line survey of Sgr B2(N) in Cycles 0 and 1 (84 — 114 GHz)
to search for new COMs and test astrochemical models

» angular resolution of EMoCA: 1.6” (13000 au)
= sufficient to separate Sgr B2(N1) and (N2):

S Sgr B2(N2) has narrow linewidths! (5 kms™)

850 um (SMA, Qin+ 2011)

200

100

r T T T T T T T T T T T T T ]
t | Sgr B2(N2) 4

Sgr B2(N1)

L L L L L L L L L L L L L L L L L
100.4 100.6 100.8 101 101.2
Frequency (GHz)




Brightness temperature (K)

Exploring molecular complexity with ALMA ALMA line survey of Sgr B2(N) 10/24

The EMoCA survey: angular resolution matters!

» 3 mm spectral line survey of Sgr B2(N) in Cycles 0 and 1 (84 — 114 GHz)
to search for new COMs and test astrochemical models

» angular resolution of EMoCA: 1.6” (13000 au)
= sufficient to separate Sgr B2(N1) and (N2):

S Sgr B2(N2) has narrow linewidths! (5 kms)
850 um (SMA, Qin+ 2011)
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Tentative detection of N-methylformamide
(Belloche et al. 2017, A&A, 601, A49)

."ff‘r » methyl isocyanate (CHsNCO) detected in Sgr B2(N), Orion KL, and
IRAS 16293 (Halfen+ 2015, Cernicharo+ 2016, Ligterink+ 2017)

_ » N-methylformamide (CHsNHCHO):
structural isomer of acetamide (CH3C(O)NH,)

» accurate spectroscopic predictions of CHzNHCHO from Kharkiv/Lille
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Tentative detection of N-methylformamide

(Belloche et al. 2017, A&A, 601, A49)

» methyl isocyanate (CHsNCO) detected in Sgr B2(N), Orion KL, and

IRAS 16293 (Halfen+ 2015, Cernicharo+ 2016, Ligterink+ 2017)

» N-methylformamide (CH3NHCHO):
structural isomer of acetamide (CH3C(O)NH,)
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» accurate spectroscopic predictions of CHzNHCHO from Kharkiv/Lille

i
l

MN

L L
167 9188 9189
T T T

o saw  wa

ws 41

EESE =S

W

> 5 lines of Sgr B2(N2) assigned to CH3NHCHO
= tentative detection

» observed abundance ratios in Sgr B2(N2):
[CH3NHCHO] / [CH3NCO] ~ 0.5
[CH3NHCHO] / [CH3C(O)NH,] ~ 0.7
[CH3NHCHO] / [NHo.CHO] ~ 0.03
[CH3NHCHO] / [HNCO] ~ 0.05
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(Belloche et al. 2017, A&A, 601, A49)

» methyl isocyanate (CHsNCO) detected in Sgr B2(N), Orion KL, and
IRAS 16293 (Halfen+ 2015, Cernicharo+ 2016, Ligterink+ 2017)

» N-methylformamide (CH3NHCHO):
structural isomer of acetamide (CH3C(O)NH,)
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> 5 lines of Sgr B2(N2) assigned to CH3NHCHO
= tentative detection

» observed abundance ratios in Sgr B2(N2):
[CH3NHCHO] / [CH3NCO] ~ 0.5
[CH3NHCHO] / [CH3C(O)NH,] ~ 0.7
[CH3NHCHO] / [NHo.CHO] ~ 0.03
[CH3NHCHO] / [HNCO] ~ 0.05

» chemical modeling with MAGICKAL (R. Garrod) supports tentative detection
(radical addition reaction CHz+NHCHO or CH3zNH+HCO, or hydrogenation of CHzNCO)
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Detection of a branched alkyl molecule

(Belloche et al. 2014, Science, 345, 1584)
1 (Garrod et al. 2017, A&A, 601, A48)
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Detection of a branched alkyl molecule
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» detection toward Sgr B2(N2) of
i-C3H;CN, branched form of n-C3H,CN

. -

> i-C3H,CN nearly as abundant as n-CzH;CN ([i-CsH;CN]/[n-CgH7CN] = 0.4)

» [i-C3H7CN]/[n-C3H7CN] well reproduced by hot-core chemical model MAGICKAL
(Garrod+ 2017, first inclusion of branched alkyl molecules in a reaction network!)
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» [i-C3H7CN]/[n-C3H7CN] well reproduced by hot-core chemical model MAGICKAL
(Garrod+ 2017, first inclusion of branched alkyl molecules in a reaction network!)

= new domain in structures available to the chemistry of star-forming regions

» amino acids in meteorites: branched isomers even dominate over
straight-chain ones (e.g., Cronin & Pizzarello 1983)
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Detection of a branched alkyl molecule

(Belloche et al. 2014, Science, 345, 1584)
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» detection toward Sgr B2(N2) of
i-C3H;CN, branched form of n-C3H,CN
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> i-C3H,CN nearly as abundant as n-CzH;CN ([i-CsH;CN]/[n-CgH7CN] = 0.4)

» [i-C3H7CN]/[n-C3H7CN] well reproduced by hot-core chemical model MAGICKAL
(Garrod+ 2017, first inclusion of branched alkyl molecules in a reaction network!)

= new domain in structures available to the chemistry of star-forming regions

» amino acids in meteorites: branched isomers even dominate over
straight-chain ones (e.g., Cronin & Pizzarello 1983)

= detection of i-C3H;CN establishes further link between
chemical composition of meteorites and interstellar chemistry
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Chemical composition of protostars
with NOEMA
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The CALYPSO survey

Continuum And Lines in Young ProtoStellar Objects

» Large Program with IRAM Plateau de Bure interferometer (now NOEMA) +
30 m single-dish telescope for short spacings (PI: Ph. André)

» main goal: shed light on formation process of protostellar disks and multiple
systems, to contribute to solving the angular momentum problem

» source sample: 16 of the closest Class 0 protostars (d < 420 pc)

» diagnostics: continuum and line observations at ~100—200 au resolution
to derive physical and chemical structure of protostellar envelopes

» strategy: 3 setups (at 1.3, 1.4, and 3 mm) targetting specific molecular lines at
high spectral resolution, + wide-band backends
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Properties of CALYPSO sources
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(Courtesy A. Maury, based on André+ 2008, Maury+ 2009)
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Properties of CALYPSO sources
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sources in Taurus, Perseus,
Aquila, Serpens South, and
Serpens Main (140-415 pc)

large spread in age,
luminosity, and envelope
mass (— final stellar mass)

= representative of
whole population of
Class 0 protostars
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Properties of CALYPSO sources
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(Courtesy A. Maury, based on André+ 2008, Maury+ 2009)

sources in Taurus, Perseus,
Aquila, Serpens South, and
Serpens Main (140-415 pc)

large spread in age,
luminosity, and envelope
mass (— final stellar mass)

= representative of
whole population of
Class 0 protostars

» afew Class | objects present

in some CALYPSO fields
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Complex organic molecules in Class 0 protostars

» presence of COMs in some Class 0 protostars well established
(e.g., IRAS 16293-2422: Cazaux+ 2003, Jargensen+ 2016; NGC 1333-IRAS4A/4B/2A:
Bottinelli+ 2004, 2007)
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Complex organic molecules in Class 0 protostars

» presence of COMs in some Class 0 protostars well established
(e.g., IRAS 16293-2422: Cazaux+ 2003, Jargensen+ 2016; NGC 1333-IRAS4A/4B/2A:
Bottinelli+ 2004, 2007)

» origin of COMs in Class 0 protostars debated:

» hot inner region of the envelope (hot corino, Bottinelli+ 2004)
» impact of outflow (shear zones, UV irradiation through cavity; Blake+ 1995,
Oberg+ 2011, Drozdovskaya+ 2015)
» warm layer/atmosphere of accretion disk (Jergensen+ 2005, Lee C.-F.+ 2017)

» need for:

> high angular resolution (< 1”)
» large sample of sources to investigate dependence on mass,
luminosity, evolutionary stage

= CALYPSO survey well suited to explore origin of COMs
in Class 0 protostars on a statistical basis
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NOEMA spectra of Calypso sources
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COMs in Calypso sources: line counts

Maps of number of channels with line emission above 60 (sv~2.6 kms™)
(within 216.8-220.5 and 229.2-232.8 GHz, excluding CO, '3CO, C'80, SiO, SO, OCS)
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COMs in Calypso sources: line counts

Maps of number of channels with line emission above 60 (sv~2.6 kms™)
(within 216.8-220.5 and 229.2-232.8 GHz, excluding CO, '3CO, C'80, SiO, SO, OCS)

COMs in CALYPSO sources 18/24
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COM composition of CALYPSO sources
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Three types of COM composition?



Chemical composition of protostars with NOEMA Correlations 21/24

Correlations between COMs

» whatever type of normalization,
correlation found for:
CH3CN & CH30CH3,
CH3CN & CH30H,
NH,CHO & CH30H,
CH3CHO & CH30CHO

= correlation does not imply chemical
link between species!
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Correlation with source properties?

> no obvious correlation between
(normalized) COM column densities and
envelope mass My, internal luminosity
Lint, OF Mepy/Ling (evolutionary tracer)...

= COM composition not an evolutionary
indicator during accretion phase?

or Meny/Lin NOt an evolutionary tracer?

» ...except for anticorrelation between Ly,
and abundances of CH,(OH)CHO, CH3zCHO,
and C,HsOH relative to methanol

= chemical complexity reduced
when UV radiation stronger?
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Outlook

COMs in Class 0 protostars

» COM composition does not seem to be an evolutionary indicator
— due to episodic accretion?

Branched molecules

» do branched isomers dominate in star-forming regions?
— test of model predictions with ALMA: on-going search for C4HgCN (4 isomers)

Exploring molecular complexity: how to beat the confusion limit?

» go to lower frequencies: ALMA bands 1 and 2, ngVLA, SKA?
(see also PRIMOS spectral survey of Sgr B2(N) with GBT, PI: A. Remijan)

» target sources with narrower linewidths

(see, e.g., PILS spectral survey of hot corino IRAS 16293-2422 with ALMA, PI: J. Jargensen;
detection of CH30CH,0H in NGC 63341-MM1, McGuire+ 2017)
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