Shielding of amino acids in water ice

Vincent Kofman^{1,2}, N. Kopacz², H. Jense¹, N.F.W Ligterink¹, I.L. ten Kate², H. Linnartz¹ 1. Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden 2. Department of Earth Sciences, Utrecht University

kofman@strw.leidenuniv.nl

Introduction

Comets contain organic molecules, including amino acids^{1,2}. This implies that photo-chemically instable molecules need to survive for millions of years in the strong radiation fields of space. Here we investigate how much water ice is needed to provide enough protection from vacuum ultraviolet (VUV) radiation to protect glycine (Gly) in relevant cometary environments, as well as other bodies in the Solar System, like icy moons such as Europa. This laboratory study³ is directly linked to the recent detection of glycine on comet $67P^{-2}$.

EXPERIMENT

How much water ice is required to shield the embedded molecules from **VUV radiation?**

 $CO_{2} + HCN + 2H_{2}$

Experiments and Results

OH

H₂O and Gly are simultaneously deposited on a 10 K sample, and then irradiated with VUV radiation. CO₂ is formed as a reaction product and its abundance measured using *in situ* infrared spectroscopy 3 .

VUV

Astronomical Implications

THICKNESS

From the half-life time of Gly and the half-value thickness of water, we can estimate the stability of Gly in thicker water layers. We expressed this as the required water layer to survive 1 million years in different locations in space, as shownin the table below⁴.

Shown below is the formation of CO_2 in two H_2O :Gly experiments as a function of time. Both contain the same amount of Gly, but the amount of water is different.

	Environment	VUV flux [ph s ⁻¹ cm ⁻²]	Half-life Gly [min]	Shielding 1 Myr [nm]
	Laboratory setup	1.7×10^{15}	8	2.7×10^3
	Earth, 1 AU	1.2×10^{12}	1.1×10^4	2.0×10^{3}
ard s	Jupiter, 5.2 AU	4.5×10^{10}	3.0×10^{5}	1.7×10^{3}
	Kuiper belt, 43 AU	6.5×10^{8}	2.1×10^{7}	1.3 × 10 ³
	Oort cloud, 50.000 AU	5.0×10^{4}	2.7×10^{11}	4.4×10^2
	Interstellar medium	1.0×10^{8}	1.4×10^{8}	1.1 × 10 ³
	Dense Cloud	1.0×10^{3}	1.4×10^{13}	77

Conclusions

- Even thin ice layers are sufficient to protect Gly from VUV radiation in water ices.
- Ices found at different locations in the Solar System provide enough shielding for Gly to survive Solar VUV radiation.

The half-life of Gly in water is determined from the formation of CO₂ in the two experiments: 8 min in the 70 nm experiment and 68 min in the 300 nm experiment.

Radiation shielding is expressed in the thickness required to decrease the flux by half. Our show the flux has decreased by a factor of 8, indicating roughly 75 nm water decreases the VUV flux by half.

[3.] Kofman et al.. in prep [2.] Altwead, Sci. Adv. Vol. 2, 5. 2016 [4.] Ehrenfreund ApJ. Vol. 550, 1. 2001 [1.] Goesmann et al., Sci., Vol. 349, 6247. 2015