

Chemical Complexity in Pre-stellar Cores

Izaskun Jimenez-Serra (STFC Ernest Rutherford Fellow)

Anton Vasyunin (UFU), Paola Caselli (MPE), Nuria Marcelino (ICMM), Shaoshan Zeng (QMUL), Giuliana Cosentino (UCL), David Quenard (QMUL), Silvia Spezzano (MPE), Serena Viti (UCL), Leonardo Testi (ESO), Nicolas Billot (IRAM), Charlotte Vastel (IRAP), Bertrand Lefloch (IPAG), Rafael Bachiller (OAN)

COMs: Carbon-based molecules with >6 atoms (Herbst & van Dishoeck 2009)

- Star forming regions: Hot Cores and Hot Corinos (Hollis+2000,2004; Beltran+2009; Belloche+2016; Jorgensen+2012; Lykke+2017)
- Galactic Center Giant Molecular Clouds (Martin-Pintado+2001;Requena-Torres+2006,2008; Zeng et al. submitted)
- Molecular Outflows (Arce+2008; Codella+2015,2017)

COM formation in hot sources

COMs formed mainly via:

- 1. Hydrogenation (H addition; Charnley et al. 1997, 2001)
- 2. Radical-radical surface reactions (efficient at T>30 K; Garrod et al. 2008)

COMs: Carbon-based molecules with >6 atoms (Herbst & van Dishoeck 2009)

- Star forming regions: Hot Cores and Hot Corinos (Hollis+2000,2004; Beltran+2009; Belloche+2016; Jorgensen+2012; Lykke+2017)
- Galactic Center Giant Molecular Clouds (Martin-Pintado+2001;Requena-Torres+2006,2008; Zeng et al. submitted)
- Molecular Outflows (Arce+2008; Codella+2015,2017)
- Photon-Dominated Regions (Guzman+2013; Cuadrado et al. 2017)
- Starless Cores and Pre-stellar Cores (Marcelino+2007; Oberg+2010; Bacmann+2012; Cernicharo+2012; Vastel+2014)

COMs: Carbon-based molecules with >6 atoms (Herbst & van Dishoeck 2009)

- Star forming regions: Hot Cores and Hot Corinos (Hollis+2000,2004; Beltran+2009; Belloche+2016; Jorgensen+2012; Lykke+2017)
- Galactic Center Giant Molecular Clouds (Martin-Pintado+2001;Requena-Torres+2006,2008; Zeng et al. submitted)
- Molecular Outflows (Arce+2008; Codella+2015,2017)
- Photon-Dominated Regions (Guzman+2013; Cuadrado et al. 2017)
- Starless Cores and Pre-stellar Cores (T<=10 K) (Marcelino+2007; Oberg+2010; Bacmann+2012; Cernicharo+2012; Vastel+2014)

Radical-radical surface formation inefficient at T<30 K

COM formation in cold sources (T=10 K)

Radical-radical surface formation inefficient at T<30 K

New mechanisms proposed:

- 1. Gas phase formation (Vasyunin & Herbst 2013; Balucani+2015; Vasyunin+2017)
- 2. Non-canonical explosions (Rawlings et al. 2013)
- 3. Cosmic-ray induced radical diffusion (Reboussin et al. 2014)
- 4. Impulsive spot heating on grains by CRs (Ivlev et al. 2015)
- 5. Formation after H atom addition/abstraction on grains (Chuang et al. 2016)

Starless Cores and Pre-stellar Cores

- Low temperatures of the gas: T_{kin} < 10 K (e.g. Crapsi et al. 2007)</p>
- Gas densities n(H₂) > 10⁴ cm⁻³ (e.g. Bacmann+00; Crapsi+05)

Pre-stellar Cores (Ward-Thompson+99; Crapsi+05)

1) High H₂ column densities (>10²² cm⁻²)
2) Compact density profiles at the center of the cores
3) High values of D/H fractions (from e.g. N₂D⁺/N2H+)
4) High values of CO depletion
5) Broadening of N₂H⁺ lines with infall asymmetry

Pre-stellar cores: Precursors of Solar-type systems

Pre-stellar cores: Cold and dense cores on the verge of gravitational collapse (no star inside yet)

L1544 as a testbed

Water vapour in L1544 (Caselli+2012)

L1544 as a testbed

Water vapour in L1544 (Caselli+2012)

COMs(+precursors) released with H₂O (C₃O, H₂CCO, HCOOH, CH₃CHO) (Vastel+2014)

L1544 as a testbed

 $\Delta\delta$ (arcsec)

 CH_3OH -ring at r~4000 AU

intermediate density shell

interesting chemistry appears

COMs(+precursors) released with H₂O (C₃O, H₂CCO, HCOOH, CH₃CHO) (Vastel+2014)

Detection of large COMs in L1544

Detection of large COMs in L1544

COM abundance profile in L1544

CH₃O, CH₃CHO: >6-10 x more abundant at r~4000 AU

CH₃OCH₃, CH₃OCHO and N-bearing COMs: ~2-3 x more abundant at r~4000 AU

COM abundance profile in L1544

Non-detections:

X [Glycine] < 10^{-10} X [NH₂CHO] < 10^{-12} (Lopez-Sepulcre+2014) X [CH₃NCO] < 10^{-12} (Cernicharo+2016)

O-bearing COM chemical modelling in L1544

Gas-grain chemical code of Vasyunin & Herbst (2013)

Considers the complex structure of the ices (active surface + inert bulk)

Includes chemical reactive desorption (RD; Minissale+2016)

O-bearing COM chemical modelling in L1544

Where does CO depletion occur?

Where does CO depletion occur?

Catastrophic depletion of CO → CO snow-line in pre-stellar cores

Where does CO depletion occur?

Catastrophic depletion of CO → CO snow-line in pre-stellar cores

Surface Chemistry contribution to COM formation

			Vasyunin et al. (2017)
Species	Surface	RD efficiency	
	contribution, $\%$		
$\rm CH_3O$	45	3.4(-5)	
ОН	10	4.5(-2)	
HCO	20	2.1(-3)	
CH_3	3	6.2(-1)	
$\mathrm{C}_{2}\mathrm{H}_{4}$	98	6.0(-2)	
NH_2	5	2.5(-1)	
$\rm H_2CO$	75	5.4(-2)	
$\rm CH_3OH$	99	6.4(-3)	

Small-scale structure of the CH₃OH peak

Small-scale structure of the CH₃OH peak

Conclusions

COMs are ubiquitous in the ISM. Large COMs even detected in Pre-stellar Cores (PSCs).

COM abundance profile predicted by chemical modelling -> Outer, intermediate-Av shells in PSCs may represent the main O-bearing COM reservoir.

> Chemical complexity may increase with core evolution