Organics in Meteorites: Interstellar, solar and/or parent body.

Conel M. O'D. Alexander DTM, Carnegie Institution of Washington

Meteorites: A quick introduction

(and influence of ²⁶Al, t_{1/2}≈0.7 Ma)

Chondrites – 'cosmic' sediments

Alteration≈Serpentization

- Anhydrous silicates were converted to serpentines and clays.
- Fe-metal and FeS were oxidized generating H₂.
- Ubiquitous carbonates indicate CO₂ (or CO/CH₄) was present in the ices.
- Little evidence for FTT synthesis.

Meteorite Organics

Murchison (CM2) inventory

Insoluble Organic Matter (IOM)	Abundance
Macromolecular material $(C_{100}H_{70}N_{3}O_{12}S_{2})$	70-99% total organic C
Soluble Organic Matter (SOM)	Concentration (ppm)
Carboxylic acids	>300
Polar hydrocarbons	<120
Sulfonic acids	67
Amino acids (92 named)	60
Dicarboxyimides	>50
Aliphatic hydrocarbons	>35
Dicarboxylic acids	>30
Polyols	30
Aromatic hydrocarbons	15-28
Hydroxy acids	15
Amines	13
Pyridine carboxylic acids	>7
N-heterocycles	7
Phosphonic acids	2
Purines and pyrimidines	1

Updated Table from *Meteorites and the Early Solar System II,* (2006) Pizzarello, S., Cooper, G. W., and Flynn, G. J., pp. 625-651, eds. D. S. Lauretta and H. Y. McSween

High resolution mass spectrometry analysis suggests millions of chemical structures (Schmitt-Kopplin *et al.* 2010)

(Courtesy of Danny Glavin)

Alteration Drove Organic Chemistry

 α -amino acids dominate in the least altered meteorites, but decrease dramatically with increasing alteration of hosts.

(Courtesy of Danny Glavin)

HCN Polymerization in Meteorites?

Extraterrestrial Purines in Carbonaceous Meteorites

(Courtesy of Danny Glavin)

Callahan et al. (2011) PNAS 4108: 13995-13998

Isovaline Asymmetry

 Isovaline is a chiral α-amino acid that is rare in biology, 'abundant' in many carbonaceous meteorites, <u>and resistant to</u> <u>racemization.</u>

- L-isovaline (and other α-dialkyl amino acids) excesses are observed in a wide range of carbonaceous meteorites.
 (Cronin and Pizzarello, 1997; Pizzarello and Cronin, 2000; Glavin and Dworkin, 2009; Elsila *et al.* 2016)
- Origin of asymmetry remains unclear.

What about Protein L-Amino Acid Excesses?

- L-enantiomeric excesses of up to ~60% have been seen.
 - Glavin *et al.* 2012 (L-aspartic acid in C_{ung} Tagish Lake)
 - Pizzarello et al. 2012 (L-isoleucine in CR2 MET 00426)
- Even greater caution must be taken in analyzing protein amino acids due to potential for biologic contamination!
- Complete analysis of potential interfering compounds and stable isotopic analysis is required

Cung

Polyols and D-Sugar Acid Enantiomeric Excesses

Several 5C sugar acids detected in Murchison with Dexcesses ranging from ~50 to 100% (enantiopure)

No D-enrichment observed for any of the chiral sugar alcohols detected.

Meteorite 3C to 6C sugar acid distribution distinct from soil and microbial activity.

No obvious correlations between D-sugar acid and L-amino acid excesses in the few meteorites that have been studied.

Cooper and Rios (2016) PNAS 113: E3322-E3331

The macromolecular material (IOM)

(Alexander et al. 2017)

⁽Alexander et al. 2017)

Purified IOM (aggregates of nm-µm grains)

Insoluble Organic Material (IOM)

The most primitive IOM in bulk

D/H≈6x10⁻⁴ ¹⁴N/¹⁵N≈190,

but contains isotopic hotspots with

D/H up to $\sim 6 \times 10^{-3}$ $^{14}N/^{15}N$ up to ~ 70 .

C isotope variations are rare.

Earth Solar D/H 1.6x10⁻⁴ 2x10⁻⁵ ¹⁴N/¹⁵N 270 440

Interstellar Organics?

- Large enrichments in D and ¹⁵N point to formation in molecular clouds (MCs) or perhaps the outer Solar System.
- C₁₀₀H₈₀N₄O₂₀S₂ comet Halley CHON (Kissel and Krueger, 1987).
- C₁₀₀H₇₉N_{3.8}O₁₅S₃ in CR chondrite IOM (Alexander et al. 2007).

Messenger (2000) + Busemann et al. (2006)

A comet-chondrite connection

- Fray et al. (2016) concluded that the refractory C in comet 67P dust is macromolecular and similar to chondritic IOM.
- Its N/C≈0.035, also very similar to Halley CHON and chondritic IOM (Fray et al. 2017).
- However, the C content of 67P dust is ≥7 times chondrites (Bardyn et al. 2017).

Interstellar or Solar?

- Ice in comet 67P is consistent with a largely interstellar origin.
- Abundance of refractory C in Halley and 67P ~50-70 % cosmic C.
- In the diffuse ISM, ~50% of the C is in dust (e.g., Compiègne et al. 2011), probably higher in molecular clouds.
- Is IOM diffuse ISM dust that was modified in the protosolar MC (high D, ¹⁵N, O and N functionality, etc.)?

Why no Life in Meteorites?

• Primitive meteorites had many of the conditions that would seem necessary for life:

Liquid water.

Fairly abundant organic C, including many N-rich compounds (e.g., amino acids).

A source of enantiomeric excesses.

Disequilibrium inorganic systems (serpentinization).

• Why no life? A lack of time or abundant organic P?

A mixed solar and interstellar heritage

- Circumstellar grains in meteorites demonstrate that some interstellar material survived.
- Non-solar D/H of water and presence of CO₂/CO/CH₄ and HCN/NH₃ suggest a link to cometary ices.
- The IOM has chemical affinities to refractory C in comets Halley and 67P.
 D and ¹⁵N enrichments suggest low T formation or modification in protosolar MC or outer Solar System.
- The soluble organics reflect a rich abiotic chemistry, much of which probably occurred in their asteroidal parent bodies. D and ¹⁵N enrichments suggest low T formation of precursors in interstellar or outer Solar System.

D/H in Solar System objects

Altwegg et al. (2015)

Fine-grained Silicates

There are many similarities between fine silicates in Wild 2, IDPs and chondrite matrices (Ishii et al. 2008; Zolensky et al. 2008).

Interstellar Organic Globules?

