Phosphorus:

the missing prebiotic element... found in star-forming regions and comets

Víctor M. Rivilla

Marie Skłodowska-Curie Fellow Osservatorio Astrofisico di Arcetri

F. Fontani, M. Beltrán, P. Caselli, A. Vasyunin, C. Mininni, J. Martín-Pintado, I. Jiménez-Serra, R. Cesaroni, M. Drozdovskaya, K. Altwegg and the ROSINA team...and more

Prebiotic molecules in Space and Origins of Life on Earth Bad Honnef, March 19-23 2018

Outline

The prebiotic importance of Phosphorus

P-bearing molecules in the ISM: a missing element?

Search for P-bearing molecules in star-forming regions and the Galactic Center

Phosphorus in the 67P Churyumov-Gerasimenko comet

Conclusions

The prebiotic importance of Phosphorus

Sir Alexander Todd, Chemistry Nobel Prize, Kyoto Lecture 1982

15

P-bearing molecules in the ISM: a missing element?

P is though to be synthesized in massive stars and injected to the ISM through supernova explosions (Cescutti+2012, Koo+2013, Roederer+2014).

P is though to be synthesized in massive stars and injected to the ISM through supernova explosions (Cescutti+2012, Koo+2013, Roederer+2014).

It is barely detected in space:

- P⁺ in several diffuse clouds (Jura & York 1978)
- PN, PO, CP, HCP, C₃P and PH₃ in circumstellar envelopes of evolved stars.
- PH₃ has been observed in the atmospheres of Jupiter and Saturn.

P is though to be synthesized in massive stars and injected to the ISM through supernova explosions (Cescutti+2012, Koo+2013, Roederer+2014).

It is barely detected in space:

- P⁺ in several diffuse clouds (Jura & York 1978)
- PN, PO, CP, HCP, C₃P and PH₃ in circumstellar envelopes of evolved stars.
- PH₃ has been observed in the atmospheres of Jupiter and Saturn.

Low cosmic abundance: 3 x 10⁻⁷ (Grevesse & Sauval 1998)

Element	Cosmic abundance
С	~10 ⁻⁴
0	~10 ⁻⁴
Ν	~10 ⁻⁵
Р	~10 ⁻⁷

P is though to be synthesized in massive stars and injected to the ISM through supernova explosions (Cescutti+2012, Koo+2013, Roederer+2014).

It is barely detected in space:

- P⁺ in several diffuse clouds (Jura & York 1978)
- PN, PO, CP, HCP, C₃P and PH₃ in circumstellar envelopes of evolved stars.
- PH_3 has been observed in the atmospheres of Jupiter and Saturn.

Low cosmic abundance: 3 x 10⁻⁷ (Grevesse & Sauval 1998)

- P is thought to be highly depleted in molecular clouds.
- P-bearing molecules freezes onto dust grains.

P is though to be synthesized in massive stars and injected to the ISM through supernova explosions (Cescutti+2012, Koo+2013, Roederer+2014).

It is barely detected in space:

- P⁺ in several diffuse clouds (Jura & York 1978)
- PN, PO, CP, HCP, C₃P and PH₃ in circumstellar envelopes of evolved stars.
- PH_3 has been observed in the atmospheres of Jupiter and Saturn.

Low cosmic abundance: 3 x 10⁻⁷ (Grevesse & Sauval 1998)

- P is thought to be highly depleted in molecular clouds.
- P-bearing molecules freezes onto dust grains.

Little is known about the chemistry of Phosphorus

Only a very few detections of PN towards hot cores before 2016 (Turner&Bally 1987, Ziurys & Friberg 1987, Turner et al.1990)

Only a very few detections of PN towards hot cores before 2016 (Turner&Bally 1987, Ziurys & Friberg 1987, Turner et al.1990)

Previous searches of PO were unsuccessful

Only a very few detections of PN towards hot cores before 2016 (Turner&Bally 1987, Ziurys & Friberg 1987, Turner et al.1990)

Previous searches of PO were unsuccessful

Our group started several projects to study P-bearing molecules in star-forming regions

Only a very few detections of PN towards hot cores before 2016 (Turner&Bally 1987, Ziurys & Friberg 1987, Turner et al.1990)

Previous searches of PO were unsuccessful

Our group started several projects to study P-bearing molecules in star-forming regions

- Where: sample of molecular dense $(n(H_2) > 10^4 \text{ cm}^{-3})$ clouds with large masses (> 100 M_{sun}) and T > 20 K.
- Why: they are the birthplaces of most stars, including our Sun (e.g. Adams 2010, Taquet + 2016, Drozdovskaya + 2018)

PN in a sample of star-forming regions

- IRAM 30m telecope (Sierra Nevada, Spain).
- PN(2-1) at 93.9 GHz in a sample of **27 massive dense cores** (Fontani et al. 2011; Fontani et al. 2015; Colzi et al. 2018 - POSTER 01)

PN in a sample of star-forming regions

- IRAM 30m telecope (Sierra Nevada, Spain).
- PN(2-1) at 93.9 GHz in a sample of **27 massive dense cores** (Fontani et al. 2011; Fontani et al. 2015; Colzi et al. 2018 - POSTER 01)

Fontani, Rivilla et al. (2016)

8 new PN detections

What about PO?

Not detected in any source Good constraints on upper limits

What about PO? Not detected in any source Good constraints on upper limits $N_{PO}^{upper} > N_{PN}$ PO could be as abundant as PN

First detections of PO in star-forming regions

Rivilla et al. 2016

High-mass hot core W51

Freq (GHz)

First detections of PO in star-forming regions

Rivilla et al. 2016

High-mass hot core W51

Freq (GHz)

	Abundance (10 ⁻¹⁰)
PN	0.4-1.1
РО	1.2-2.0

MF

• Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase physical model to mimic the evolution of a star-forming region.

• Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase physical model to mimic the evolution of a star-forming region.

• Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase physical model to mimic the evolution of a star-forming region.

The two P-bearing molecules form in a sequence of **gas-phase ion-molecule** and **neutral-neutral** reactions during the cold collapse phase.

• Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase physical model to mimic the evolution of a star-forming region.

The two P-bearing molecules form in a sequence of **gas-phase ion-molecule** and **neutral-neutral** reactions during the cold collapse phase.

- The heating from the protostar produces the thermal desorption of the P-bearing species.
- Hot chemistry can explain the observed abundances.

• Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase physical model to mimic the evolution of a star-forming region.

Warm-up protostellar phase

• Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase physical model to mimic the evolution of a star-forming region.

Warm-up protostellar phase

• Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase physical model to mimic the evolution of a star-forming region.

Warm-up protostellar phase

• Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase physical model to mimic the evolution of a star-forming region.

Warm-up protostellar phase

formation in cold phase + thermal desorption + hot chemistry

Shocked material at high velocities

Chemical modeling

Chemical modeling

Galactic Center

Central molecular zone of the Galaxy

• Dust grain sputtering by widespread large-scale low-velocity shocks.

Galactic Center

Central molecular zone of the Galaxy

M+0.02-0.02B

\$+0.24

SgrA+ (-30",-30")*

THE SAMPLE

Rivilla et al. (2018)

Galactic Center

Central molecular zone of the Galaxy

 V_{LSR} (km s⁻¹)

SarA+ (-30".-30"

Rivilla et al. (2018)

Phosphorus in the 67P Churyumov-Gerasimenko comet

Collaboration with Maria Drozdozvskaya, Kathrin Altwegg, and the ROSINA team

The Phosphorus connection between protostars and comets

The Phosphorus connection between protostars and comets

The Phosphorus connection between protostars and comets

67P Churyumov-Gerasimenko comet

Phosphorus in 67 P

Altwegg et al. (2016)

Clear mass peak at the location of P (30.9737 Da)

Phosphorus in 67 P

PO

PN

Altwegg et al. (2016)

Clear mass peak at the location of P (30.9737 Da)

Phosphorus in 67 P

Rivilla et al. (in prep.)

- Clear mass peak at the location of PO (mass 46.9681 Da).
- Possible contamination from CCl (same mass).

CCI?

No Correlation with ³⁵Cl peak

CCI?

No Correlation with ³⁵Cl peak

CH₃Cl (possible precursor of CCl) not detected at that measurement period

CCI?

No Correlation with ³⁵Cl peak

CH₃Cl (possible precursor of CCl) not detected at that measurement period

.

PO is present in the comet.

.

PO is present in the comet.

• Upper limits for PN, PH₃ and CP.

.

PO is present in the comet.

• Upper limits for PN, PH₃ and CP.

[PO/PN]>10

.

PO is present in the comet.

• Upper limits for PN, PH₃ and CP.

[PO/PN]>10

PO is more abundant than PN both in star-forming regions and the comet.

PN detected in a sample of massive dense star-forming cores

PN detected in a sample of massive dense star-forming cores

P is less depleted in SF regions than previously thought.

PN detected in a sample of massive dense star-forming cores

P is less depleted in SF regions than previously thought.

PO detected for the first time in 3 star-forming regions and in a quiescent cloud in the Galactic Center.

PN detected in a sample of massive dense star-forming cores

P is less depleted in SF regions than previously thought.

PO detected for the first time in 3 star-forming regions and in a quiescent cloud in the Galactic Center.

Several observations point towards a shocked origin of P-bearing molecules.

PN detected in a sample of massive dense star-forming cores

P is less depleted in SF regions than previously thought.

PO detected for the first time in 3 star-forming regions and in a quiescent cloud in the Galactic Center.

Several observations point towards a shocked origin of P-bearing molecules.

Confirmation of PO in the comet 67-P.

PN detected in a sample of massive dense star-forming cores

P is less depleted in SF regions than previously thought.

PO detected for the first time in 3 star-forming regions and in a quiescent cloud in the Galactic Center.

Several observations point towards a shocked origin of P-bearing molecules.

Confirmation of PO in the comet 67-P.

Chemical connection between SF regions and comet: PO is always more abundant than PN.

Phosphorus:

the missing prebiotic element... found in star-forming regions and comets

Víctor M. Rivilla

Marie Skłodowska-Curie Fellow Osservatorio Astrofisico di Arcetri

F. Fontani, M. Beltrán, P. Caselli, A. Vasyunin, C. Mininni, J. Martín-Pintado, I. Jiménez-Serra, R. Cesaroni, M. Drozdovskaya, K. Altwegg and the ROSINA team...and more

Prebiotic molecules in Space and Origins of Life on Earth Bad Honnef, March 19-23 2018

