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The prebiotic importance of Phosphorus

P-bearing molecules in the ISM:
a missing element?

Search for P-bearing molecules in
star-forming regions and the Galactic Center

Phosphorus in the
67P Churyumov-Gerasimenko comet



The prebiotic importance

of Phosphorus




Extracellular fluid
Nucleus
Cytoplasm

Cell membrane

Carbohydrate
Glycoprotein

Globular protein

Protein Channel
(Transport protein)

Cholesterol

Glycolipid

Surface protein /
Globular protein Filaments of

(Integral) cytoskeleton

Alpha-helix protein
(Integral protein)

Peripheral protein

Phospholipid bilayer

Phospholipid

(Phosphatidylcholine)

Hydrophilic head

¥ Hydrophobic tail

Thymine

Adenine

5 end
?_

e
e8> Phosphate-
P00

deoxynbose
backbone

*Ii‘/

OH

N
3 end Cytosine [™
Guanine 5 end




“Where there’s life, there’s phosphorus

Sir Alexander Todd, Chemistry Nobel Prize, Kyoto Lecture 1982
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P-bearing molecules in the ISM:

a missing element?
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P is though to be synthesized in massive stars and injected to the ISM through
supernova explosions (Cescutti+2012, Koo+2013, Roederer+2014).
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e P is thought to be highly depleted in molecular clouds.
e P-bearing molecules freezes onto dust grains.



~ Pbearingmolecules nméISH .

. .

P is though to be synthesized in massive stars and injected to the ISM through
supernova explosions (Cescutti+2012, Koo+2013, Roederer+2014).

It is barely detected in space:

e P*in several diffuse clouds (Jura & York 1978)

e PN, PO, CP, HCP, C3P and PH3 in circumstellar envelopes of evolved stars.
e PHs3 has been observed in the atmospheres of Jupiter and Saturn.
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Low cosmic abundance: 3 x 107 (Grevesse & Sauval 1998)

e P is thought to be highly depleted in molecular clouds.
e P-bearing molecules freezes onto dust grains.

Little is known about the chemistry of Phosphorus
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Only a very few detections of PN towards hot cores before 2016
(Turner&Bally 1987, Ziurys & Friberg 1987, Turner et al.1990)
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~.*..* P-hearing molecules in star-forming regions

Only a very few detections of PN towards hot cores before 2016
(Turner&Bally 1987, Ziurys & Friberg 1987, Turner et al.1990)

Previous searches of PO were unsuccessful

Oty iy ?

Our group started several projects to study
P-bearing molecules in star-forming regions
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« Where: sample of molecular dense (n(H,) > 104 cm3) clouds with large masses
(> 100 M) and T > 20 K.

o Why: they are the birthplaces of most stars, including our Sun
(e.g. Adams 2010, Taquet+2016, Drozdovskaya+2018)
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e IRAM 30m telecope (Sierra Nevada, Spain).

e PN(2-1) at 93.9 GHz in a sample of 27 massive dense cores
(Fontani et al. 2011; Fontani et al. 2015; Colzi et al. 2018 - POSTER 01)
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e IRAM 30m telecope (Sierra Nevada, Spain).

e PN(2-1) at 93.9 GHz in a sample of 27 massive dense cores
(Fontani et al. 2011; Fontani et al. 2015; Colzi et al. 2018 - POSTER 01)
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What about PO?

Not detected in any source
Good constraints on upper limits
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Not detected in any source
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PO could be as abundant as PN A
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Not detected in any source
Good constraints on upper limits

PO could be as abundant as PN A

Search in the two brightest cores in PN with the
IRAM 30m telescope
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Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase
physical model to mimic the evolution of a star-forming region.
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* Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase
physical model to mimic the evolution of a star-forming region.

Cold starless p'hése Warm-up -protdStéllér‘.p_ha%.le i’ : i

time x 10° yr

The two P-bearing molecules form in a
sequence of gas-phase ion-molecule

i and neutral-neutral reactions during
' the cold collapse phase.
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* Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase
physical model to mimic the evolution of a star-forming region.

.C‘dld. sta'rles.s p'hése Warm-up -protdStéllér‘.p,ha%.é i’ ; i

time x 10° yr

The two P-bearing molecules form in a Thed heattlhng trf]rom Itf(;e protFosta;
: sequence of gas-phase ion-molecule [§ [t)I:o I;’_Ees e thermal desorption o
3 and neutral-neutral reactions during € F-bearing species.

the cold collapse phase. « Hot chemistry can explain the
A observed abundances.
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* Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase
physical model to mimic the evolution of a star-forming region.

Cold starless phase Warm -up protostellar phase Q

The heating from the protostar
produces the thermal desorption of
the P-bearing species.

Hot chemistry can explain the
observed abundances.
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observed abundances.
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* Our theoretical team at MPE (Vasyunin, Caselli) included the chemical network of P in a 2-phase

physical model to mimic the evolution of a star-forming region.

Cold starless phase Warm -up protostellar phase Q

P initial abundance = 5x10-°

depletion factor = Pcosmic / Pgas ~ 60 l

~100 (Lefloch et al. 2016)

The heating from the protostar
Significantly lower than the value produces the thermal desorption of

previously thought: 600-104 , ' the P-bearing species.

Hot chemistry can explain the
(Turner et al. 1990, Wakelam & Herbst 2008) - observed abundances.
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- - chemical modeling

-~ formation in cold phase = -
+ b

thermal desorption
+

Gb5.89-0.39 | : hot chemistry

star-forming region

Mininni et al. (2018)
POSTER 14!
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Shocked material at
high velocities
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Shocked material at
high velocities
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Galactic Genter

Central molecular zone
of the Galaxy

e Dust grain sputtering by widespread
large-scale low-velocity shocks.
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COMs-rich

Rivilla et al. (2018)
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THE SAMPLE

Shock-dominated
regions

COMs-rich

Rivilla et al. (2018)
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Phosphorus in the 67P
Churyumov-Gerasimenko comet

Collaboration with Maria Drozdozvskaya,
Kathrin Altwegg, and the ROSINA team



The Phosphorus connection hetween protostars and comets




The Phosphorus connection hetween protostars and comets
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Pristine material from the
early Solar System.

67P Churyumov-Gerasimenko comet



The Phosphorus connection hetween protostars and comets

Pristine material from the
early Solar System.

67P Churyumov-Gerasimenko comet
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Altwegg et al. (2016)
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Phosphorus
in67pP

« Clear mass peak at the location of PO
(mass 46.9681 Da).

e Possible contamination from CCI
(same mass).

47.04



Correlation between the peak at 46.969 and the P peak (mass 31) and 3°Cl (mass 35)

Rivilla et al. (in prep.)
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Correlation between the peak at 46.969 and the P peak (mass 31) and 3°Cl (mass 35)

Rivilla et al. (in prep.)
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PO is present in the comet.

« Upper limits for PN, PH3 and CP.

n
o
3%
Ny

(%]
2
8
=

S

Q
**




n
o
3%
Ny

(%]
2
8
=

S

Q
**

Phosphorus
in67pP

PO is present in the comet.

« Upper limits for PN, PH3 and CP.

[PO/PN]>10




Phosphorus
in67pP

PO is present in the comet.

« Upper limits for PN, PH3 and CP.
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[PO/PN]>10

m PO is more abundant than PN both in
star-forming regions and the comet.
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of P-bearing molecules.

Confirmation of PO in the comet 67-P.



PN detected in a sample of massive dense star-forming cores

P is less depleted in SF regions than previously thought.

PO detected for the first time in 3 star-forming
regions and in a quiescent cloud in the Galactic
Center.

Several observations point towards a shocked origin
of P-bearing molecules.

Confirmation of PO in the comet 67-P.

Chemical connection between SF regions and comet:
PO is always more abundant than PN.
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