Pre- and Protostellar Roots of Cometary Volatiles

Maria N. Drozdovskaya

CSH and IAU Gruber Foundation Fellow Center for Space and Habitability, Universität Bern, CH

WE-Heraeus-Seminar Prebiotic Molecules in Space and Origins of Life on Earth Bad Honnef, DE March 20th, 2018

UNIVERSITÄT BERN

CENTER FOR SPACE AND HABITABILITY

The Pillars of Creation MUSE-VLT/ESO

The assembly line

Protoplanetary disk midplanes:

- Formed from the prestellar materials
- Sites of protoplanetary and cometary building block formation

When and where are the seeds to life planted?

Complex organic molecules to an astrochemist are C-containing and have 6+ atoms. Herbst & van Dishoeck 2009

ESA/Rosetta/NAVCAM, CC BY-SA IGO 3.0

The Pillars of Creation **MUSE-VLT/ESO**

Simple & Complex Molecules at all Stages

Complex Organics in the prestellar phase

L1544 & L1498 - talk of Izaskun Jiménez-Serra

and in the protostellar phase

Low-mass protostars - talk of Arnaud Belloche

High-mass protostars - talks of Maite Beltrán & Francesco Fontani

and in comets

Rosetta mission to 67P/C-G

Herbst E, van Dishoeck EF. 2009. Annu. Rev. Astron. Astrophys. 47:427–80

Chemistry during collapse

Chemistry occurs in parallel with the large-scale physical evolution of the system and with grain growth.

What survives into the disk? What is incorporated into comets?

Let's consider a protoplanetary disk analogous to our Solar Nebula

Case study: IRAS 16293-2422

- in L1689 region in ρ Oph;
 d~120 pc
- low-mass; $L \sim 21 L_{\odot}$
- binary with a separation of ~600 AU

Case study: IRAS 16293-2422

- ALMA Protostellar
 Interferometric Line Survey
- angular res. ~60 AU
- spectral res. 0.2 km s⁻¹

P.I.: Jes Jørgensen

• sensitivity 5 mJy beam⁻¹ km s⁻¹

PILS

• $\sim 10\ 000$ lines in 33.7 GHz

<u>Some detections:</u> glycolaldehyde (HOCH2CHO), methyl formate (HCOOCH3), acetic acid (CH3COOH), ethylene glycol (aGg'- & gGg'-(CH2OH)2), ethylene oxide (c-C2H4O), acetaldehyde (CH3CHO), acetone (CH3COCH3), propanal (C2H5CHO), formamide (NH2CHO), methyl isocyanate (CH3NCO), methyl cyanide (CH3CN), ethyl cyanide (C2H5CN), vinyl cyanide (C2H3CN), cyanamide (NH2CN), methyl mercaptan (CH3SH),

Face-on disk around B: chemistry isn't hidden from our view! COM emission dominated by compact homogeneous material Jørgensen+ 2016, 2018 resubm. <u>Detected:</u> SO₂, SO, OCS, CS, H₂CS, H₂S and CH₃SH, incl. OC³³S [1st time this source] & tentatively C³⁶S [1st time low-mass protostar]

diverse inventory of S-bearing volatiles and isotopologues; including complex (CH_3SH)

Drozdovskaya+ 2018

On large scales:

Outflows: SO and SO₂

Envelope: OCS, H_2S and H_2CS

All also present on small disk-scales!

HDCS/H₂CS = 0.1 ± 0.014 , hence D/H = 0.05 ± 0.007

- Highly singly-deuterated (comparable to O-bearing complex organics)
- HDCS/H₂CS $\approx 1.5 \times$ HDCO/H₂CO
- $D_2CS/HDCS \le 5 \times D_2CO/HDCO$
- $D_2CS/H_2CS \le 10 \times D_2CO/H_2CO$

Drozdovskaya+ 2018; Persson+ 2018;

Jørgensen+ 2018 resubm.

Distribution of S-volatiles near IRAS 16293-2422 B

Is thioformaldehyde less processed than formaldehyde? Did it form under more D-rich conditions?

More complex species show higher deuteration – formed later, before/during collapse?

No difference seen for deuteration of various functional groups – short infall timescales limiting time for exchange reactions?

First ISM detection of doubly deuterated methyl formate with a 2-3x higher D/H than that of the singly deuterated isotopologue

Deuteration of complex organics

Jørgensen+ 2018 resubm.; Manigand+ 2018 subm.

Let's suppose 67P/C-G is a probe of our innate Solar Nebula

67P/C-G is a tracer of the cold past

The cometary ice contains highly volatile species ~3% O2 ~1% CO ~0.15% CH4 ~0.1% N2

~10-4 % Ar

Statistically: [D2O/HDO] / [HDO/H2O] = 1/4

In 67P: [D2O/HDO] / [HDO/H2O] = 17

This means: at least some water was preserved as ice from earlier phases

O2 is as abundant in 67P as CO and well-mixed with H2O

Altwegg+ 2016, 2017; Le Roy+ 2015; Calmonte+ 2016, 2017

Coma is heterogenous: getting the bulk is nontrivial

Neutral water (top) and CO2 outgassing measured by VIRTIS (Fougère et al., 2016, data from Migliorini et al., 2016)

Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA During the last orbit of 67P, the Northern hemisphere was processed:

it was the summer hemisphere during 5.5 years

=> The surface layer may have lost most of its volatiles?

Measurements during perihelion are closer to Northern hemisphere values!

Rubin+ 2018 in prep.

ROSINA-DFMS, COSAC & Ptolemy

Methyl isocyanate, propanal and glycolaldehyde could not be confirmed in the original COSAC identifications.

Presence of polyoxymethylene in Ptolemy spectrum is unlikely; toluene is measured instead. Altwegg+ 2017b

Molecule		Mass (Da)	Rel. abundance (per cent)	Identified in DFMS spectra
CH ₄	Methane	16	0.7	Y
H ₂ O	Water	18	80.9	Y
CHN	Hydrogencyanide	27	1.1	Y
CO	Carbon monoxide	28	1.1	Y
CH5N	Methylamine	31	1.2	Y
CH ₃ CN	Acetonitrile	41	0.5	minor
CHNO	Isocyanic acid	43	0.5	Y
C ₂ H ₄ O	Acetaldehyde	44	1.0	Y
CH ₃ NO	Formamide	45	3.7	Y
C ₂ H ₅ NH ₂	Ethylamine	45	0.7	Y
CH ₃ NCO	Methyl isocyanate	57	3.1	
C_3H_6O	Acetone	58	1.0	Y
C ₂ H ₅ CHO	Propanal	58	0.4	?
CH ₃ CONH ₂	Acetamide	59	2.2	minor
CH ₂ OHCHO	Glycol aldehyde	60	1.0	
CH ₂ (OH)CH ₂ (OH)	Ethylene glycol	62	0.8	Y

How do IRAS16293-2422B & 67P/C-G compare?

Chloromethane: CH₃Cl

Relative to CH₃OH: IRAS 16293-2422 B: $\sim (0.9 - 1.1) \times 10^{-4}$

67P/C-G: ~ $(0.007 - 6) \times 10^{-4}$

On 67P/C-G:

only ~20% of S is in volatiles!

~80% is in refractories

Main S-volatile reservoirs have been observed in IRAS 16293-2422 B.

Ratio	ALMA B	67P/C-G
SO/SO ₂	0.33	0.4 - 0.7 (section 4.4 of Calmonte et al. 2016)
CH ₃ SH/H ₂ CS	3.7	0.69 - 5.2 (based on values in Table 4)
C ₂ H ₅ SH/CH ₃ SH	$\leqslant 0.33^{\text{p}}$	0.0010 - 0.021 (based on values in Table 4)

Calmonte+ 2016, 2017 Drozdovskaya+ 2018

S-volatiles

- much more OCS than H₂S for IRAS 16292-2422 B than on 67P/C–G
- SO/SO₂ ratios agree
- CH_3SH/H_2CS ratios are comparable; differences of $\times (0.7 - 5.3)$

- Stronger UV irradiation for IRAS 16293-2422 B (correlates with it being a binary)
- Warmer birth cloud of the Solar System
 (also supported by models of O₂ chemistry; Taquet+2016b)

Drozdovskaya+ 2018

The physics of formation set the chemical provenance! Interpretation of O- and N-bearing species ongoing...

P-bearing: talk of Víctor Rivilla

Models back this up!

- complex organic ices are on the order of methanol ice (~1% of water ice)
- Comparable to 67P!

(Le Roy+ 2015; Goesmann+ 2015; Altwegg+ 2017b)

- total COMs ~10% of icy mantle
- transport enhances the abundance of complex organic molecules in protoplanetary disks

Key messages

- At least partial prestellar origins for the content of our protosolar nebula.
- Other low-mass systems may be analogous.
- Dynamic infall and chemistry en route are non-negligible for the composition of the protoplanetary disk and the planetesimals therein.

The seeds to life are available on comets, but the roots are already implanted in the pre- and protostellar phases.

Merci vilmal!