

Science & Technology Facilities Council

Chemical modelling of formamide and methyl isocyanate in star-forming regions

David Quénard Post-Doctoral Research Assistant

Izaskun Jiménez-Serra (QMUL), Serena Viti (UCL), Jon Holdship (UCL), Audrey Coutens (LAB)

The search for pre-biotic species

The peptide bond: CO-NH

Important bond in biochemistry (link between two amino-acids)

Several species detected with a peptide-like bond (e.g. NH₂CHO, CH₃NCO) or a peptide bond (HNCO)

The search for pre-biotic species

Understand the chemistry of glycine precursors and COM-related species.

The search for pre-biotic species

Understand the chemistry of glycine precursors and COM-related species.

UCLCHEM (Viti et al. 2004; Holdship et al. 2017) https://uclchem.github.io/

Gas-phase + dust grain chemical code (364 species; 3446 reactions)

Recently proposed gas-phase/grain-surface reactions for HNCO and CH₃NCO (+ isomers)

= grain surface

Reactions	Reference		
Isocyanic Acid – HNCO/HOCN/HCNO			
Complex gas/grain network	Quan et al. (2010)		
$\#NH + \#CO \longrightarrow \#HNCO$	Fedoseev et al. (2015)		
Methyl Isocyanate – CH ₃ NCO			
$HNCO + CH_3 \longrightarrow CH_3NCO + H$	Halfen et al. (2015)		
$\#CH_3 + \#OCN \longrightarrow \#CH_3NCO$	Belloche et al. (2017) ; Ligterink et al. (2017)		
$#CH_3 + #HNCO \longrightarrow #CH_3NCO + #H$	Ligterink et al. (2017)		
$#CH_3 + #HNCO \longrightarrow #CH_4 + #OCN$	Ligterink et al. (2017)		
$\#CH_3NCO + \#H \longrightarrow \#CH_3NH + \#CO$	Ligterink et al., private communication		

New theoretical calculations from Majumdar et al. (2018)

Reaction		α	β	γ
HNCO + CH_3	$\rightarrow CH_3NCO + H$	1.00×10^{-10}	0	8.04×10^{3}
$CH_3NCO + H_3^+$	\rightarrow CH ₃ NCOH ⁺ + H ₂	1.00×10^{-9}	-0.5	0
$CH_3NCO + HCO^+$	$\rightarrow CH_3NCOH^+ + CO$	1.09×10^{-9}	-0.5	0
$CH_3NCO + H^+$	$\rightarrow CH_3NCO^+ + H$	1.00×10^{-9}	-0.5	0
$CH_3NCO + CO^+$	$\rightarrow CH_3NCO^+ + CO$	1.00×10^{-9}	-0.5	0
$CH_3NCO + He^+$	$\rightarrow \mathrm{CH}_3\mathrm{NCO}^+ + \mathrm{He}$	1.00×10^{-9}	-0.5	0
$CH_3NCO^+ + e^-$	\rightarrow CH ₃ + OCN	1.50×10^{-7}	-0.5	0
$CH_3NCOH^+ + e^-$	\rightarrow CH ₃ NCO + H	3.00×10^{-7}	-0.5	0
$CH_3NCO + CRP$	\rightarrow CH ₃ + OCN	4.00×10^{3}	0	0
$CH_3NCO + Photon$	\rightarrow CH ₃ + OCN	5.00×10^{-10}	0.0	0
HCN + s-CO	\rightarrow s-HCNCO	1	0	0
s-HCNCO + s -H	\rightarrow s-H ₂ CNCO	1	0	2.40×10^{3}
$s-H_2CNCO + s-H$	\rightarrow s-CH ₃ NCO	1	0	0
$s-CH_3 + s-HNCO$	\rightarrow s-CH ₃ NCO	1	0	8.04×10^{3}
$s-CH_3 + s-OCN$	\rightarrow s-CH ₃ NCO	1	0	0
$s-CH_3 + s-OCN^-$	\rightarrow s-CH ₃ NCO + e ⁻	0	0	0
$s-N + s-CH_3CO$	\rightarrow s-CH ₃ NCO	1	0	0

New theoretical calculations from Majumdar et al. (2018)

Reaction		α	β	γ
$HNCO + CH_3$	\rightarrow CH ₃ NCO + H	1.00×10^{-10}	0	8.04×10^{3}
$CH_3NCO + H_3^+$	$\rightarrow \mathrm{CH}_3\mathrm{NCOH}^+ + \mathrm{H}_2$	1.00×10^{-9}	-0.5	0
$CH_3NCO + HCO^+$	$\rightarrow CH_3NCOH^+ + CO$	1.09×10^{-9}	-0.5	0
$CH_3NCO + H^+$	$\rightarrow CH_3NCO^+ + H$	1.00×10^{-9}	-0.5	0
$CH_3NCO + CO^+$	$\rightarrow CH_3NCO^+ + CO$	1.00×10^{-9}	-0.5	0
$CH_3NCO + He^+$	$\rightarrow \mathrm{CH}_3\mathrm{NCO}^+ + \mathrm{He}$	1.00×10^{-9}	-0.5	0
$CH_3NCO^+ + e^-$	\rightarrow CH ₃ + OCN	1.50×10^{-7}	-0.5	0
$CH_3NCOH^+ + e^-$	\rightarrow CH ₃ NCO + H	3.00×10^{-7}	-0.5	0
$CH_3NCO + CRP$	\rightarrow CH ₃ + OCN	4.00×10^{3}	0	0
$CH_3NCO + Photon$	\rightarrow CH ₃ + OCN	5.00×10^{-10}	0.0	0
HCN + s-CO	\rightarrow s-HCNCO	1	0	0
s-HCNCO + s -H	\rightarrow s-H ₂ CNCO	1	0	2.40×10^{3}
$s-H_2CNCO + s-H$	$\rightarrow s-CH_3NCO$	1	0	0
$s-CH_3 + s-HNCO$	$\rightarrow s-CH_3NCO$	1	0	8.04×10^{3}
$s-CH_3 + s-OCN$	$\rightarrow s-CH_3NCO$	1	0	0
$s-CH_3 + s-OCN^-$	\rightarrow s-CH ₃ NCO + e ⁻	0	0	0
$s-N + s-CH_3CO$	\rightarrow s-CH ₃ NCO	1	0	0

New theoretical calculations from Majumdar et al. (2018)

Reaction		α	β	γ
$HNCO + CH_3$	$\rightarrow CH_3NCO + H$	1.00×10^{-10}	0	8.04×10^{3}
$CH_3NCO + H_3^+$	$\rightarrow \mathrm{CH}_3\mathrm{NCOH}^+ + \mathrm{H}_2$	1.00×10^{-9}	-0.5	0
$CH_3NCO + HCO^+$	$\rightarrow CH_3NCOH^+ + CO$	1.09×10^{-9}	-0.5	0
$CH_3NCO + H^+$	$\rightarrow \mathrm{CH}_3\mathrm{NCO}^+ + \mathrm{H}$	1.00×10^{-9}	-0.5	0
$CH_3NCO + CO^+$	$\rightarrow CH_3NCO^+ + CO$	1.00×10^{-9}	-0.5	0
$CH_3NCO + He^+$	$\rightarrow \mathrm{CH}_3\mathrm{NCO}^+ + \mathrm{He}$	1.00×10^{-9}	-0.5	0
$CH_3NCO^+ + e^-$	\rightarrow CH ₃ + OCN	1.50×10^{-7}	-0.5	0
$CH_3NCOH^+ + e^-$	$\rightarrow CH_3NCO + H$	3.00×10^{-7}	-0.5	0
$CH_3NCO + CRP$	\rightarrow CH ₃ + OCN	4.00×10^{3}	0	0
	an toan	K 00 ··· 10 = 10		<u> </u>
HCN + s-CO	\rightarrow s-HCNCO	1	0	0
s-HCNCO + s -H	\rightarrow s-H ₂ CNCO	1	0	2.40×10^{3}
$s-H_2CNCO + s-H$	\rightarrow s-CH ₃ NCO	1	0	0
	, , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	÷		0101/(10
$s-CH_3 + s-OCN$	\rightarrow s-CH ₃ NCO	1	0	0
$s-N + s-CH_2CO$	$\rightarrow s-CH_2NCO$	1	0	0
$s-N + s-CH_3CO$	$\rightarrow s-CH_3NCO$	1	0	0

Recently proposed gas-phase/grain-surface reactions for NH₂CHO

Reactions	Reference		
Formamide – NH_2CHO			
$NH_2 + H_2CO \longrightarrow NH_2CHO + H$	Skouteris et al. (2017)		
$\#HNCO + \#H \longrightarrow \#NH_2 + \#CO$	Song & Kästner (2016)		
$\#HNCO + \#H \longrightarrow \#H_2NCO$	Song & Kästner (2016)		
$#H_2NCO + #H \longrightarrow #NH_2CHO$	Song & Kästner (2016)		
$#H_2NCO + #H \longrightarrow #HNCO + #H_2$	Noble et al. (2016)		
$\#NH_2 + \#HCO \longrightarrow \#NH_2CHO$	Fedoseev et al. (2016)		
$\#NH_2 + \#HCO \longrightarrow \#NH_3 + CO$	Fedoseev et al. (2016)		
$\#NH_2 + \#H_2CO \longrightarrow \#NH_2CHO + \#H$	Fedoseev et al. (2016)		
$\#NH_2 + \#H_2CO \longrightarrow \#NH_3 + \#HCO$	Fedoseev et al. (2016)		
$#H_2NCO + #CH_3 \longrightarrow #CH_3CONH_2$	Belloche et al. (2017)		
$\#NH_2CHO + \#OH \longrightarrow \#H_2NCO + \#H_2O$	Belloche et al. (2017)		
$\#NH_2CHO + \#CH_2 \longrightarrow \#CH_3CONH_2$	Belloche et al. (2017)		

Observational constraints COMs in the pre-stellar core L1544 O-bearing and N-bearing COMS are more abundant at r~4000 AU (methanol peak position) (Jiménez-Serra et al. 2016)

Important non-detections:

Core centre X [NH₂CHO] < 2.4x10⁻¹³ X [CH₃NCO] < 2.0x10⁻¹² Methanol peak X [NH₂CHO] < 6.7×10^{-13} X [CH₃NCO] < 6.0×10^{-12} Observational constraints COMs in the pre-stellar core L1544 O-bearing and N-bearing COMS are more abundant at r~4000 AU (methanol peak position) (Jiménez-Serra et al. 2016)

Important non-detections:

Core centre X [NH₂CHO] < 2.4x10⁻¹³ X [CH₃NCO] < 2.0x10⁻¹² Methanol peak X [NH₂CHO] < 6.7×10^{-13} X [CH₃NCO] < 6.0×10^{-12}

IRAS16293-2422: hot corino and envelope

Recent detection of CH₃NCO toward the hot corino B! (Martín-Doménech et al. 2017, Ligterink et al. 2017)

NH₂CHO observation from Jaber et al. (2014) and Lopéz-Sepulcre et al. (2015)

L1544 → t ~ 5.5 x 10⁶ yr

IRAS16293 → Same chemical age used for both positions: t ~ 3 x 10⁴ yr

Good agreement for HNCO in all three regions

10⁶

L1544 → t ~ 5.5 x 10⁶ yr

IRAS16293 → Same chemical age used for both positions: t ~ 3 x 10⁴ yr

Good agreement for HNCO in all three regions

NH₂CHO chemistry

Gas phase chemistry
Grain surface chemistry:

- Radical-radical reactions
- Hydrogenation

NH₂CHO chemistry

Gas phase chemistry Grain surface chemistry:

- Radical-radical reactions
- Hydrogenation

NH₂CHO chemistry

Gas phase chemistry

- Grain surface chemistry:
 - Radical-radical reactions
 - Hydrogenation

Modelling different physical regimes help to constrain the chemistry !

HNCO & H₂CO vs NH₂CHO

Mendoza et al. (2014) and Lopéz-Sepulcre et al. (2015): Observational correlation → Chemical correlation between the two?

Modelling of NH₂CHO (no hydrogenation from HNCO)
→ Physical (environmental) correlation depending mainly on the temperature that triggers different chemical processes.

Conclusions

Modelling of N-bearing COMs predicts abundances of NH₂CHO, CH₃NCO (and isomers), HNCO (and isomers) in L1544 and IRAS16293 B

- L1544: methanol peak
- IRAS16293 B: hot corino and cold envelope

Both gas-phase and grain-phase chemistry are needed to explain the observed abundances of NH₂CHO

> Hydrogenation of HNCO tends to overestimate the NH₂CHO abundance compared to radical-radical reactions

The observed correlation between HNCO and NH₂CHO may come from an environmental correlation (temperature) rather than a chemical correlation

