

Phosphorus-bearing molecules in Solar-type Star Forming Regions

B. Lefloch (IPAG, Grenoble)

C. Codella, C. Vastel, S. Viti, I. Jiménez-Serra, L. Podio, C. Ceccarelli, R. Bachiller, N. Balucani

Why searching P-molecules in Solar-type SFRs ?

P-molecules in Solar-type SFRs : a "direct" link with cometary material

See Rivilla's talk yesterday on the high-mass SFRs (Fontani et al. 2016, Rivilla et al. 2016, 2018)

The IRAM-30m Large Project ASAI (Astrochemical Survey At IRAM)

Sources	Coordinates (J2000)	d (pc)	Lum. (L_{\odot})	3 mm (mK)	2 mm (mK)	1.3 mm (mK)	δu (kHz)	Comment
TMC1	$04^{h}41^{m}41.90^{s} + 25°41'27.1''$	140	_	_	4.2 - 4.2	_	48.8, 195.3	Early prestellar core
L1544	$05^{h}04^{m}17.21^{s} + 25^{\circ}10'42.8''$	140	-	2.1 - 7.0	-	-	48.8	Evolved prestellar core
B1b	$03^h 33^m 20.80^s + 31^{\circ} 07' 34.0''$	230	0.77	2.5 - 10.6(*)	4.4 - 8.0	4.2 - 4.6	195.3	First Hydrostatic Core
L1527	$04^{h}39^{m}53.89^{s} + 26^{\circ}03'11.0''$	140	2.75	2.1-6.7(*)	4.2 - 7.1	4.6 - 4.1	195.3	Class 0 WCCC
IRAS4A	$03^{h}29^{m}10.42^{s} + 31^{\circ}13'32.2''$	260	9.1	2.5 - 3.4	5.0 - 6.1	4.6 - 3.9	195.3	Class 0 Hot Corino
L1157mm	$20^{h}39^{m}06.30^{s} + 68^{\circ}02'15.8''$	250	3	3.0 - 4.7	5.0 - 6.5	3.8 - 3.5	195.3	Class 0
SVS13A	$03^{h}29^{m}03.73^{s} + 31^{\circ}16'03.8''$	260	34	2.0 - 4.8	4.2 - 5.1	4.6 - 4.3	195.3	Class I
AB Aur (†)	$04^{h}55^{m}45.84^{s} + 30^{\circ}33'33.04''$	145	-	4.6 - 4.3	4.8 - 3.9	2.1 - 4.3	195.3	protoplanetary disk
L1157-B1	$20^{h}39^{m}10.20^{s} + 68^{\circ}01'10.5''$	250	-	1.1 - 2.9	4.6 - 7.2	2.1 - 4.2	195.3	Outflow shock spot
L1448-R2	$03^{h}25^{m}40.14^{s} + 30^{\circ}43'31.0''$	235	_	2.8 - 4.9	6.0 - 9.7	2.9 - 4.9	195.3	Outflow shock spot

Unbiased spectral surveys covering the full 3, 2, 1 and 0.8 mm bands of ten of Solar-type SFRs (Lefloch et al. 2018)

JUST PERFECT TO OBTAIN THE CENSUS OF P-BEARING MOLECULES Lefloch et al. : Wilhelm und Else Heraeus Seminar - March 2018

Source	Туре	PN	РО
TMC1	Early Prestellar Core	-	-
L1544	Late Prestellar Core	-	-
B1b	Early Class 0 (FHSC)	Y	-
IRAS4A	Class 0 (hot corino)	Y	-
L1157-mm	Class 0 (WCCC)	-	-
L1527	Class 0/I (WCCC)	-	-
SVS13A	Class I (hot corino)	-	-
L1157-B1	Shock	Y	Y
L1448-R2	Shock	-	-

Lefloch et al. (2018)

Lefloch et al. : Wilhelm und Else Heraeus Seminar - March 2018

PN in PROTOSTARS B1b & NGC1333-IRAS4A

 WEAK LINE EMISSION
 FWHM ~ 1 km/s
 ONLY LOW-EXCITATION TRANSITIONS J=2-1 and J=3-2 (E_{UP}= 13.5K) ARE DETECTED

-> PN TRACES THE COLD ENVELOPE

Non-LTE modeling				
B1b:	T=13 K → [PN] ≈ 4x10 ⁻¹³			
IRAS4A:	T=35 K → [PN] ≈ 2x10 ⁻¹³			

PN in PROTOSTARS OPEN QUESTIONS

➢ WHY ONLY PN DETECTED IN PROTOSTARS ?

- WHY PN IS ONLY DETECTED IN COLD GAS AROUND PROTOSTARS ?
- ➢ WHERE IS THE MAJOR RESERVOIR OF P ?

→ NEW P-BEARING CHEMISTRY UNDER STUDY ←

P- Chemistry in L1157-B1

First detection of PO and PN in Sun-like star forming region L1157 Emission from molecular-rich shock B1

Shock Modelling

UCL_CHEM (Viti et al. 2011) + Parametric shock code (Jimenez-Serra et al. 2008)

Step 1 : pre-shock gas conditions.

<u>Main assumption</u>: P is depleted and hydrogenated on the dust grains: PH, PH₂, PH₃ (Charnley & Millar 1994) **Step 2: chemical gas and dust evolution across the shock.**

 \rightarrow density n0, shock velocity, X_i[P], duration of pre-shock phase

Good fits when the pre-shock density is at least 10⁵ cm⁻³

Lefloch et al. : Wilhelm und Else Heraeus Seminar - March 2018

P and N CHEMISTRY

ISM P CHEMISTRY IS POORLY EXPLORED D D ADDITIONAL/ALTERNATIVE ROUTES OF PN FORMATION UNDER STUDY (Balucani et al. in prep)

Work in progress to simultaneously model N/NO and P/PN chemistry.... (see also Codella et al. 2017 on NO in shocks)

Conclusions and Prospects

Few P-bearing species have been detected for the first time in solar-type star forming regions thanks to ASAI : PN and PO

Is Phosphorus depleted by about 2 orders of magnitude?

PN detected towards cold envelopes surrounding hot-corinos

PO and PN are both present in the early phase of shocks: PO looks to disappear earlier than PN

Preliminary chemical model analysis: PO and PN are produced in shocks from gas phase reactions

→ MORE WORK IS NEEDED TO MODEL THE P + N CHEMISTRY (E.G. UNDERSTAND THE ROLE AND FATE OF PH₃)

Lefloch et al. : Wilhelm und Else Heraeus Seminar - March 2018