THE CHEMICAL AND PHYSICAL STRUCTURE OF THE HOT MOLECULAR CORE G31.41+0.31

Maite Beltrán, Víctor Rivilla, Riccardo Cesaroni INAF-Osservatorio Astrofisico di Arcetri

A LITTLE BIT OF HISTORY

- G31.41+0.41 is a hot molecular core located at 7.9 kpc and has a luminosity of 3 ×10⁵ L_{\odot}
- No embedded HII region. Two centimeter continuum sources associated (likely radio jets) (Cesaroni+2010)
- A compact core and a velocity gradient detected in COMs (Beltrán+ 2004, 2005; Cesaroni+ 2011)
- O Dust core: mass ~500-1700 M_☉ (Beltrán+ 2004; Girart+ 2009; Cesaroni+ 2011)
- Dust linearly polarized emission detected with SMA, mainly along major axis of the core. B lines perpendicular to the major axis of the hot core (Girart, Beltrán+ 2009).
- The magnetic field has a clear "pinched" morphology along major axis. The dust polarization pattern suggests an hourglass shape morphology

A LITTLE BIT OF HISTORY

- G31.41+0.41 is a hot molecular core located at 7.9 kpc and has a luminosity of 3 ×10⁵ $L_{☉}$
- No embedded HII region. Two centimeter continuum sources associated (likely radio jets) (Cesaroni+2010)
- A compact core and a velocity gradient detected in COMs (Beltrán+ 2004, 2005; Cesaroni+ 2011)
- O Dust core: mass ~500-1700 M_☉ (Beltrán+ 2004; Girart+ 2009; Cesaroni+ 2011)
- Dust linearly polarized emission detected with SMA, mainly along major axis of the core. B lines perpendicular to the major axis of the hot core (Girart, Beltrán+ 2009).
- The magnetic field has a clear "pinched" morphology along major axis. The dust polarization pattern suggests an hourglass shape morphology

• First detection of glycolaldehyde outside the Galactic Center (Beltrán et al. 2009)

- Glycolaldehyde (CH₂OHCHO) has been extensively confirmed, and its reduced alcohol, ethylene glycol (CH₂OH)₂ has also been detected (Rivilla+ 2017).
- The emission of these COMs is very compact, peaking towards the peak of the 1.3 mm continuum. Low abundance complex organic molecules, like (CH₂OH)₂ or CH₂OHCHO, are good probes of the gas located closer to the forming stars.

G31.41+0.31

Rivilla+ (2017)

methanol, methyl cyanide, methyl formate, ethanol, dimethyl ether, glycolaldehyde, ethylene glycol ...

COMPLEX ORGANIC MOLECULES

Rivilla+ (2017)

- Glycolaldehyde (CH₂OHCHO) has been extensively confirmed, and its reduced alcohol, ethylene glycol (CH₂OH)₂ has also been detected (Rivilla+ 2017).
- The emission of these COMs is very compact, peaking towards the peak of the 1.3 mm continuum. Low abundance complex organic molecules, like (CH₂OH)₂ or CH₂OHCHO, are good probes of the gas located closer to the forming stars.

CH₃OCH₃ (DME) C₂H₅OH (ET) CH-OCHO (MF) DEC_{J2000} CH₂OHCHO (GA) (CH₂OH)₂ (EG) CH₃CN v₈=1 18^h47^m34.^s4 18^h47^m34.^s4 18^h47^m34.^s4 34[°].3 34[°].3 34^s3 RA_{J2000} E_{up}=70K METHYL FORMATE v+=1 DIMETHYL ETHER Eup=315K - 3 - 3 1 0 -1 Δα (arcsec) 1 0 -1 Δα (arcsec) 3 2 -2 -3 3 -2

G31.41+0.31

Beltrán+ (2018)

OBSERVED MOLECULAR RATIOS

Rivilla+ (2017)

OBSERVED MOLECULAR RATIOS

FORMATION OF GA AND EG

Coutens+ (2018) have explored with the UCLCHEM chemical code different **surface-chemistry** formation mechanisms for EG and GA and compared the predictions for a range of sources of different luminosities with the observations.

• A better agreement is found for a formation through recombination of two HCO radicals (scenario 1), but the reaction between HCO and CH₂OH could also contribute to form GA (scenario 2).

FORMATION OF GA AND EG

 However, the observed molecular ratios among COMs are also compatible with a new proposed gas-phase route in which GA is formed from ethanol (Skouteris+ 2018).

O-bearing	N-bearing
 2 atoms: CO, C¹⁷O, C¹⁸O, C¹³O 3 atoms: HCO, HC¹⁸O+, HC¹⁷O+, H¹³CO⁺ 4 atoms: H₂CO, H₂¹³CO 5 atoms: CH₂CO, HCOOH 6 atoms: CH₃OH, ¹³CH₃OH 7 atoms: CH₃CHO, c-H₂COCH₂ 8 atoms: CH₃OCHO, CH₂OHCHO 9 atoms: CH₃OCH₃, C₂H₅OH, 10 atoms: CH₃COCH₃, (CH₂OH)₂ 	 2 atoms: NH, CN, NS 3 atoms: HCN, H¹³CN, HC¹⁵N, HN¹³C, H¹⁵NC, N¹⁵NH+ 4 atoms: HNCO, HNC¹⁸O 5 atoms: HC₃N 6 atoms: NH₂CHO, CH₃CN, CH₃¹³CN 7 atoms: HC₅N, CH₃NCO, C₂H₃CN 9 atoms: C₂H₅CN
Only C and H• 3 atoms: CCH• 5 atoms: c-C ₃ H ₂ • 7 atoms: CH ₃ CCHSi-bearing• 2 atoms: SiO, SiSP-bearing• 2 atoms: SiO, SiS	$\begin{array}{l} 1^{3}\text{CS}, 1^{3}\text{C}^{34}\text{S}, \mathbb{C}^{34}\text{S} \\ 0_{2}, H_{2}\text{S}, OCS, O^{13}\text{CS}, \\ 5^{+} \end{array} \qquad \begin{array}{l} \textbf{Deuterated} \\ \bullet \text{ 3 atoms: } DCN, DCO+ \\ \bullet \text{ 4 atoms: } NH_{2}D \\ \bullet \text{ 6 atoms: } CH_{2}DCN, CH_{2}DOH, \\ CH_{3}OD \\ \end{array} \\ \begin{array}{l} \textbf{Hrecombination lines} \\ \bullet \text{ H-alpha} \\ \bullet \text{ H-gamma,} \\ \bullet \text{ H-beta} \\ \bullet \text{ He-alpha} \end{array}$

45 molecular species, **16 COMs**, 23 isotopologues, 6 deuterated species, 2 cyclic molecules, 4 positive ions and hydrogen recombination lines

GUAPOS SURVEY

GUAPOS: G31.41+0.31 Unbiased ALMA sPectral Observational Survey

o PI: Beltrán

- A-granted Cycle 5 ALMA proposal to carry out an unbiased spectral survey in Band 3 @ 1" resolution
- o 4 out of 9 spectral setups already observed
- Different aspects: line identification, COMs, deuteration and fractionation, phosphorus and sulfur, chemical modeling, and kinematics

THE GUAPOS TEAM

- Arcetri: Maite Beltrán, Riccardo Cesaroni, Laura Colzi, Francesco Fontani, <u>Chiara Mininni</u>, Víctor Rivilla
- o Cologne: Álvaro-Sánchez-Monge, Peter Schilke
- o UCL: Serena Viti
- o Queens Mary: Izaskun Jiménez-Serra, David Quénard
- ESO: Leonardo Testi

ALMA 1.4mm @ 0.2"

- Albeit well resolved, the continuum emission unveils a very smooth structure of the HMC without any hint of fragmentation ⇒ the continuum emission at 1.4 mm is optically thick, as suggested by the high value of the peak brightness temperature (~132 K)
- The high opacity/brightness explains the existence of deep absorption

KINEMATICS: INFALL

 Inverse P-Cygni profiles in practically all species (or red-shifted absorption) towards bright embedded sources have been detected ⇒ the core is undergoing free-fall collapse

G31.41+0.31

- Inverse P-Cygni profiles in practically all species (or red-shifted absorption) towards bright embedded sources have been detected ⇒ the core is undergoing free-fall collapse
- The red-shifted absorption velocity changes with the energy of the line. |V_{sys}-V_{red}| ranges from ~2 to 8 km/s ⇒ the infall is accelerating towards the center of the core

$\begin{array}{c} (S) \\ (S)$

G31.41+0.31

Beltrán+ (2018)

KINEMATICS: ROTATION SPIN-UP

- The emission of high-density tracers shows a clear velocity gradient along the NE–SW direction regardless of the upper level energy of the transition consistent with rotation
- PA of the velocity gradient is ~68° ⇒ consistent with PA~63° of the HMC dust continuum emission
- The slope of PV plots is steeper for higher energy transitions
- Rotation velocity increases with increasing energy of the transition ⇒ rotation speeds up towards the center of the core
- This is expected for conservation of angular momentum in a rotating and infalling structure

Cesaroni+ (2017); Beltrán+ (2018)

KINEMATICS: ROTATION SPIN-UP

- The emission of high-density tracers shows a clear velocity gradient along the NE–SW direction regardless of the upper level energy of the transition ⇒ consistent with rotation
- PA of the velocity gradient is ~68° ▷ consistent with PA~63° of the HMC dust continuum emission
- The slope of PV plots is steeper for higher energy transitions
- Rotation velocity increases with increasing energy of the transition ⇒ rotation speeds up towards the center of the core
- This is expected for conservation of angular momentum in a rotating and infalling structure

Beltrán+ (2018)

STRUCTURE OF THE CORE

• Physical parameters across the determined by fitting the ground state rotational transitions of methyl formate (v = 0) and those in the first torsionally excited state ($v_t = 1$).

- \circ T \propto r^{-q}
- By integrating the density distribution over the volume

$$M_c = \frac{4\pi}{3-n}\rho_c r_c^3$$

○ For r_c = 8500 au, T_c = 146 K, n=2, q=-0.77 volume density@ r_c = 5x10⁶ cm⁻³ and M_c = 120 M_{\odot}

CH₃OCHO

Beltrán+ (2018)

 $[\]circ \rho_c \propto r^{-n}$

MONOLITHIC CORE?

- Dust continuum emission shows does NOT show any hint of fragmentation
- The presence of redshifted absorption in the core would suggest that what we are observing in G31 is a "real" massive core undergoing monolithic collapse, as suggested by McKee & Tan (2002)
- BUT ...
- Two free-free sources already present in the core
 fragmentation
- Rotational spin-up towards core center
- Monolithic appearance due to opacity of the core

Beltrán+ (2018)

MONOLITHIC CORE?

MONOLITHIC CORE?

ALMA 3.3mm + 1.4mm @ 0.08"

STAY TUNED!