Hot molecular emission in circumstellar disk gas as a diagnostic of radiative and mechanical heating

M. Ádámkovics¹ and J. R. Najita²

¹Clemson University, Clemson, SC, USA ²National Optical Astronomical Observatory, Tucson, AZ, USA adamkom@clemson.edu

Warm molecular emission

Warm molecular emission

Carr & Najita (2008)

Molecule	<i>T</i> (K)	<i>N</i> (10 ¹⁶ cm ⁻²)	<i>R</i> * (AU)	Abundance to CO
H ₂ O	575 ± 50	65 ± 24	2.1 ± 0.1	1.3
ОН	525 ± 50	8.1 ± 5.2	2.2 ± 0.1	0.18
HCN	650 ± 100	6.5 ± 3.3	0.60 ± 0.05	0.13
C_2H_2	650 ± 150	0.81 ± 0.32	0.60†	0.016
CO ₂	350 ± 100	0.2 –13	1.2 ± 0.2	0.004 - 0.26
СО	900 ± 100	49 ± 16	0.7 ± 0.1	1.0

*The equivalent radius for the emitting area A ($R = [A/\pi]^{1/2}$).

†Area was set to that derived for HCN.

Thermal-chemical model of disk gas

- X-ray, FUV & Ly-a irradiated gas in circumstellar disk
- **Dust:** H₂ formation, FUV opacity, and thermal accommodation
- ~120 chemical species, ~1200 reactions
- Time-dependent, non-equilibrium chemical kinetics
- Detailed FUV photo-rates & heating ("radiation transfer")
 - local FUV field, molecular cross sections, treat self-shielding
- Python codebase:
 - Kinetics pre-processor of chemical rate equations
 - Modules for disk structure, heating, cooling & FUV
 - Wrapper to C-library for LSODE in ODEPACK

Najita & Ádámkovics (2017) Ádámkovics, Najita & Glassgold (2016) Ádámkovics, Glassgold, & Najita (2014) Ádámkovics, Glassgold, & Meijerink (2011) Glassgold, Meijerink, & Najita (2009) Glassgold, Najita, & Igea (2004) Glassgold, Najita, & Igea (1997)

Layered disk gas

Ádámkovics, Glassgold, & Najita (2014)

FUV radiative transfer: scattered Lya

Photochemical heating

Fluorescent H₂ Emisssion

Ardila et al., 2002; Herczeg et al., 2002

- H₂ excitation ~ 2500 K
- Hot H₂ pumped by Lya
- emitting region < 0.5 AU

H2 Fluorescent Emission

France+ (2012)

Target	$FWHM_{[1,7]}^{a}$ $(km s^{-1})$	$\langle R_{\mathrm{H}_{2}} \rangle_{[1,7]}^{a}$ (AU)
AA Tau	62 ± 4	0.69 ± 0.08
AK Sco	57 ± 35	1.25 ± 0.77
BP Tau	70 ± 6	0.13 ± 0.02
CS Cha	18 ± 7	9.00 ± 4.55
CV Cha	22 ± 30	4.75 ± 3.88
DE Tau	55 ± 6	0.23 ± 0.04
DF Tau A ^f	64 ± 7	0.16 ± 0.03
DK Tau A ^f	55 ± 2	0.24 ± 0.02
DM Tau	27 ± 5	0.80 ± 0.24
DN Tau	71 ± 19	0.09 ± 0.04
DR Tau	35 ± 7	2.09 ± 0.62
GM Aur	41 ± 11	1.68 ± 0.65

Ádámkovics, Najita, & Glassgold (2016)

Dissociation of H₂O & OH by Lyα heats gas, Hot H₂ for fluorescent emission can be thermally pumped

What is left after FUV?

Turbulent / viscous / mechanical heating

R = 1 A U

Role of mechanical heating: warm shielded layer

Role of mechanical heating: warm shielded layer

Najita & Ádámkovics (2017)

Bad Honnef, Germany - March 20, 2018

