X-ray spectral analysis

eRO-SDAS workshop 21.11.2024 Johannes Buchner

SPRINGER NATURE Reference

Statistical Aspects of X-ray Spectral Analysis

Johannes Buchner & Peter Boorman

https://arxiv.org/abs/2309.05705

Cosimo Bambi Andrea Santangelo *Editors*

Handbook of X-ray and Gamma-ray Astrophysics

X-ray Spectral Analysis

1) Likelihood

- Measurement process
- Background & source regions
- Linear algebra approximation
- Likelihood & statistics
- 2) Bayesian inference
 - Constraining physical parameters
 - Differentiating models
 - Treating backgrounds

Bayes theorem:

$$P(\theta|D) = \frac{\pi(\theta) \cdot P(D|\theta)}{P(D)}$$

X-ray Spectral Analysis

1) Likelihood

- Measurement process
- Background & source regions
- Linear algebra approximation
- Likelihood & statistics

Bayes theorem:

- 2) Bayesian inference
 - Constraining physical parameters
 - Differentiating models
 - Treating backgrounds

Why X-rays?

- Hot plasmas
 - Stars, Galaxy clusters, Inter-galactic medium
 - Temperatures, turbulence, ...

model examples: blackbody, mekal, apec Compact objects

. . .

- Black holes of all sizes, neutron stars, pulsars,
- Accretion rate, spin, ...

model examples: powerlaw, relxill, optxagn

after ESA

To obtain manageable focal lengths (~10 m), use two reflections on a parabolic and a hyperboloidal mirror (Wolter) type (Wolter 1952 for X-ray microscopes, Giacconi & Rossi 1960 for UV- and X-rays).

But: small collecting area (A ~ $\frac{2}{\pi}$ r l/f where f: focal length)

ARF – sensitive area

Detecting X-rays

After Bradt

2d imaging with Charge Coupled Devices (CCDs)

RMF – detector response

Background

M. Wille

Cosmic rays & protons

not going through the mirror

Files

- .pha or .pi spectrum, counts in channels
- .rsp or .rmf response matrix
- .arf effective area
- bkg.pi background spectrum

Data archive for other missions: heasarc.gsfc.nasa.gov

Search for previous observations with xamin interface

Poisson realisation

Formal data analysis

Formal data analysis

- 2. Predict N(c)
- 3. Compare prediction to actual number Poisson statistics
- 4. Modify guess

Comparing predicted and observed counts

Single spectral bin

- Poisson
 - [–] k: integer
 - λ: real (mean&variance)
 - Asymmetric
 - [–] Integer
 - Positive
- Scaling
- Addition
- Subtraction

shape changes

(Poisson distribution) Variability!

 $P(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

(Skellam distribution)

Samples Electronics (shot noise)

Single spectral bin

 $P(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

- Poisson
 - k: integer
 - λ: real (mean&variance)
- Gaussian
 - Mean (μ) & variance (σ^2) = λ
 - Mean (μ) & variance (σ^2) = k
 - real, can be negative

Approximation quality

- Tails have different slopes
 - Gauss high-end more permissive
 - Poisson low-end more permissive
- Right way: Poisson
- Historically: Gauss faster to evaluate

Best fits are biased (in %) if assuming chi² statistics

Humphrey et al. (2009), Mighell (1999)

Wheaton et al. (1995); Nousek & Shue (1989); Mighell (1999; van Dyk et al. (2001)

"Statistics"

- Poisson
 - Likelihood $\mathcal{L}(k|\lambda) = e^{-\lambda}\lambda^k/k!$ -2*log \rightarrow $-2\log \mathcal{L}(k|\lambda) = 2\lambda - 2k\log \lambda + C$

- Gaussian
 - Likelihood

$$\mathcal{L}(k|\mu,\sigma) = \exp[-((x-\mu)/\sigma)^2/2]/\sqrt{2\pi\sigma^2}$$
$$-2\log\mathcal{L}(x|\mu,\sigma) = ((x-\mu)/\sigma)^2 + C$$

"Statistics"

- Poisson
 - Likelihood $\mathcal{L}(k|\lambda) = e^{-\lambda}\lambda^k/k!$ -2*log \rightarrow $-2\log \mathcal{L}(k|\lambda) = 2\lambda - 2k\log \lambda + C$ CStat, Cash
 - Cash (1979)

- Gaussian
 - Likelihood

$$\mathcal{L}(k|\mu,\sigma) = \exp[-((x-\mu)/\sigma)^2/2]/\sqrt{2\pi\sigma^2}$$
$$-2\log\mathcal{L}(x|\mu,\sigma) = ((x-\mu)/\sigma)^2 + C$$
$$\mathsf{Chi}^2$$

Does not mean they follow a chi² distribution!

• Poisson $\mathcal{L}(k_1, k_2 | \lambda_1, \lambda_2) = e^{-\lambda_1} \lambda_{11}^k e^{-\lambda_2} \lambda_{22}^k$

 $2\lambda_1 - 2k_1\log\lambda_1 + 2\lambda_2 - 2k_2\log\lambda_2 + C$

Gaussian

 $\mathcal{L}(x_1, x_2 | \mu_1, \sigma_1, \mu_2, \sigma_2) = \exp[-((x_1 - \mu_1) / \sigma_1)^2] \exp[-((x_2 - \mu_2) / \sigma_2)^2]$

$$((x_1 - \mu_1)/\sigma_1)^2 + ((x_2 - \mu_2)/\sigma_2)^2$$

Inference with likelihoods

$$\mathcal{L}(\overrightarrow{k}|\theta_1,\theta_2,...,\theta_d,M,R,B,...)$$

Higher L: model under these parameters often makes this data

Lower L: less frequently

 $P(D|\theta)$

 \rightarrow Frequency of data

Likelihood <u>function</u> at D, at parameter values (not a density)

Inference desiderata

• Parameter ranges allowed or probable (L, T, ..., physical parameters)

 $P(\theta|D)d\theta$ Probability <u>density</u>

In infinitely small region: zero probability

Parameter

space exploration

Parameter space exploration

- Local optimization
 - LM, simplex, ... (many)
 - Monte carlo optimization
- Local sampling: MCMC
 - Tempering
 - Limitations
- Global optimization
 - Genetic algorithms (DE)
- Global sampling
 - Nested sampling

Best fit parameters

If many data are created under $\hat{\mu_D}$ logL interval -1/2 below best fit (Wilks' theorem) Contains true value 68% of realisations

 $P(\hat{\mu}|\hat{\mu_D})$ Confidence interval

What was the question again? $P(\mu|D)$ Are conditions fulfilled? What do unequal "errors" mean? 2d?

- If away from boundary
- If model is linear

(symmetric,

- If ndata → high single gauss)
- If θ is true parameter
 - → then

Best fit parameters

Calibrate a Confidence interval

Detection

Best fit distributions

Convolution of

True parameter distribution + Measurement error & analysis method

Confidence intervals

Histogram of best fits

Meaning? Upper limits?

Cumulative distribution

Clean solution: Hierarchical Bayesian Model (HBM) for example Baronchelli, Nandra & Buchner (2020) https://github.com/JohannesBuchner/PosteriorStacker

Sampling

Idea: Sample parameter solutions proportionally to their probability

For example with a grid

Posterior grid

- evaluate *likelihood* at every point
 - how prone is the process to produce the observed data
- Compute relative importance:
 - \mathcal{L}/\mathcal{L}
- Grab those that make up 90% of $\sum \mathcal{L}$
- se that $\int \mathcal{L}$
- $Z=\mathcal{L}$ "evidence" is average likelihood

Posterior grid

- Result is dependent on placement
- Equal spacing in θ_1 or in $\log \theta_1$.
- Choice of spacing is called "prior"
- coin = investment in computing there, put coins where it is worthwhile

Bayesian posterior

θ

Ρ

parameter solutions weighted by their probability

Credible intervals

Definitions:

Density \rightarrow cumulative \rightarrow quantiles

- Compare two parameter spaces by $\sum \mathcal{L}\Big|_{M1} / \sum \mathcal{L}\Big|_{M2}$
- How many coins to put in M1, M2?
- model prior

Parameter Estimation vs. Model Comparison

- Remove coins contributing less than 10%.
- Under Bayesian inference, same problem:
 - comparing bags of hypotheses

- prior is measure, rule of averaging, deformation of space to "natural variables", investment in/weighting of sub-regions
- most common priors: uniform, log-uniform.
- model priors are relative size of spaces

Curse of dimensionality

- k^d grid \rightarrow infeasible
- Sample θ

$$\theta_1 \ \theta_2 \ \theta_3 \dots$$

$$W_1 W_2 W_3$$

(Posterior chains)

- Techniques:
 - Importance sampling
 - MCMC
 - Nested sampling

- Missing ingredient: transition kernel
- tune to the problems
- Fraction of visits ~ converges to ~ probability of hypothesis
- Where does chain spend 90% of its visits

MCMC proposals

- Metropolis + Random Walk
- Goodman-Weare (emcee)
- HMC (Hamiltonian Monte Carlo)

 \rightarrow animation

https://chi-feng.github.io/mcmc-demo/app.html

Random walk, HMC

MCMC proposals

- Metropolis Random Walk
 - Adv: simple
 - Disadv: poor mixing
- Affine-invariant ensemble
 - Adv: auto-tuning for gaussian L
 - Disadv: poor mixing in bananas, collapses in high-d (Huijser+15)
- HMC (Hamiltonian Monte Carlo)
 - Adv: tunes itself to surface
 - Disadv: need gradients of models

Goodman & Weare (2010)	
emcee	

MCMC stopping

- MCMC theory: n→inf
- Trace plots
- Autocorrelation length
- Convergence tests
 - Detect if unreliable
 - Gelman-Rubin diagnostic
 - (many more)

Escaping local maxima: strategies

- Multiple random start positions
 - Augment local techniques
- Make surface easier
 - Tempering/Annealing
- Walker population
 - GW
 - Genetic algorithms (DE)

Model comparison

Model comparison Buchner+14

- Empirical models
 - Information content
 - Prediction quality
- Component presence
 - Regions of practical equivalence
- Physical effects
 - Bayesian model comparison
 - Priors often well-justified

https://arxiv.org/abs/1506.02273 Betancourt (2015)

Information criteria

- Akaike information criterion Akaike (1973)
- Is more complex worth storing?

$$AIC = 2 * d - 2 * L_{max}$$
$$AIC = 2 * d + CStat$$

Advantages:

- rooted in information theory
- independent of prior

Disadvantages:

- No uncertainties, thresholds unclear

- ...

- Compare two parameter spaces by $\sum \mathcal{L}\Big|_{M1} / \sum \mathcal{L}\Big|_{M2}$
- How many coins to put in M1, M2?
- model prior

L high, V tiny

L medium, V medium

What to do with Z

• Z1, Z2

$\frac{p(M1|D)}{p(M2|D)} = \frac{Z1 \cdot p(M1)}{Z2 \cdot p(M2)}$

Posterior odds ratio Bayes Prior factor odds ratio

Buchner+14

What to do with Z

• Z1, Z2

• model priors: leave to reader or motivated by theory

- Discard highly improbable model or marginalise
- Does $rac{p(M1|D)}{p(M2|D)} = 3/1$ mean M2 is correct in a quarter of the cases?

Global sampling

nested sampling idea

- MCMC: only consider likelihood ratios. Integration by vertical slices
- nested sampling: compute geometric size at various likelihood thresholds
- orthogonal, unique re-ordering of volume by likelihood

 $\sum \underbrace{ \text{Shrinkage} \times \text{Likelihood}}_{\text{Importance of shell}} = Z$

nested sampling algorithm

Carlow Ser

÷,

- Start with volume 1, draw randomly uniformly 200 points
- remove one, volume shrinks by 1/200.

- draw a new one excluding the removed volume
- Unique ordering of space required: via likelihood

draw a new uniformly random point, with higher likelihood (the crux of nested sampling)

- Scanning up vertically, done at some point
- converges (flat at highest likelihood)

Missing ingredients

- MCMC: Insert tuned transition kernel
- NS: Insert constrained drawing algorithm
 - General solutions: MultiNest, MCMC, HMCMC, Galilean, RadFriends, PolyChord

RadFriends / MultiNest

- Use existing points to guess contour
- Expand contour a little bit
- Draw uniformly from contour
- Reject points below likelihood threshold
- RadFriends: Compute distance at which every point has a neighbor. Bootstrap (Leave out) for safety.
- MultiNest clusters and uses ellipses

Animation:

https://iohannesbuchner.github.jo/mcmc-demo/app.html#RadFriends-NS.stan

What to do with Z

• Z1, Z2

model priors: leave to reader or motivated by theory

- Discard highly improbable model or marginalise
- Does $rac{p(M1|D)}{p(M2|D)} = 3/1$ mean M2 is correct in a quarter of the cases?

What to do with Z

• Z1, Z2

 $p(M1|D) = Z1 \cdot p(M1)$ $p(M2|D) \stackrel{=}{=} \overline{Z2 \cdot p(M2)}$

Posterior odds ratio

Bayes Prior factor odds ratio

Buchner+14

What to do with Z

• Z1, Z2

• model priors: leave to reader or motivated by theory

- Discard highly improbable model or marginalise
- Does $rac{p(M1|D)}{p(M2|D)} = 3/1$ mean M2 is correct in a quarter of the cases?

Calibrating model decisions • Model probabilities → decisions

- False decision rate (false positives/negatives)
 - Monte Carlo simulations (parametric bootstrap)

Calibrating model decisions

Advantages:

- Get rid of parameter prior dependences
- Have frequentist properties of Bayesian method
- Completely Bayesian treatment + decisions

Disadvantages:

- Can be computationally expensive

Frequentist properties of Bayesian methods

- Make decisions
 - Is parameter greater than C?
 - Is this model "better" than the other?
- Parametric bootstrap
 - Monte Carlo simulation allow arbitrary complexity

Model comparison

Backgrounds
Backgrounds

k_{1B},λ_{1B}

Assume time, locationindependence

 $k_{src'}\lambda_{src'}t_{src'}A_{src}$

 $k_{\rm bkg},\!\lambda_{\rm bkg},\!t_{\rm bkg},\!A_{\rm bkg}$

$$\vec{\lambda}_{\rm src} = \vec{F}_{\rm src} \cdot \underline{R}_{\rm src} + \vec{F}_{\rm bkg} \cdot \underline{R}_{\rm src}$$
$$\vec{\lambda}_{\rm bkg} = \vec{F}_{\rm bkg} \cdot \underline{R}_{\rm bkg}$$
$$C = 2\vec{\lambda}_{\rm src} \cdot \vec{\lambda}_{\rm src} - 2\vec{k}_{\rm src} \cdot \log \vec{\lambda}_{\rm src} + 2\vec{\lambda}_{\rm bkg} \cdot \vec{\lambda}_{\rm bkg} - 2\vec{k} \cdot \log \vec{\lambda}_{\rm bkg}$$

Assumptions:

- area energy-
- independent
- rate constant with area, time, location

Remember:

 λ =number / cm² / s / keV * dE * dt * dA

 λ =number / cm² / s / keV * dE * dt * dA

Background + Source

- src+bkg Gauss → Gauss (subtractable, flats/darks)
- src+bkg Poisson \rightarrow Poisson
 - High counts (>100) in every single src and bkg bin → Gauss + Subtract with bkg variance propagation
 - Subtract & model with Skellam distribution
 - Do the right thing and model <u>both</u> as Poisson

Background + Source

- src+bkg Gauss → Gauss (subtractable, flats/darks)
- src+bkg Poisson \rightarrow Poisson
 - High counts (>100) in every single src and bkg bin → Gauss + Subtract with bkg variance propagation
 - Subtract & model with Skellam distribution
 - Do the right thing and model <u>both</u> as Poisson
 - Poisson estimate of rate in each bin, independently
 - Function approximation of background
 - In counts (empirical model)
 - Physical background flux model
 - Fit simultaneously with source
 - Fit background model first, use best-fit background shape for source fit

("WStat", default in xspec if you set statistic "cstat")

Remember:

eROSITA background

- Diffuse emission
 - Local hot bubble
 - Galactic disk
 - Galactic halo
- Cosmic background
 - Unresolved AGN
- High-energy particle background

https://wiki.mpe.mpg.de/eRosita/ScienceRelatedStuff/Backgro und

Semi-physical background models

Maximize poisson likelihood at all bins →shape

Particle background Cosmic background Instrumental background

Location & time-

Empirical background

Maximize poisson likelihood in each bin →shape

Pros:

- Can contain physical knowledge & smoothness Small uncertainties
- Small uncertainties
- 0 bin counts ok

Cons:

- Need to specify model
- Fit can be poor

Chandra

(XMM, Chandra, Swift/XRT models in BXA)

Empirical background models

Automated shape finding Simmonds, Buchner et al. (2017)

XMM/PN,MOS, Chandra/ACIS, NuSTAR, Suzaku, RXTE, Swift/XRT

Estimate most likely background rate in each bin

Add scaled to source region counts

(wstat, Xspec default if set to cstat with no background model) pgstat Pros:

- no model specification needed Cons:
- no continuity
- unnecessarily large uncertainties
- need >0 counts per bin
- Need >3 counts per bin, otherwise biased!
- https://giacomov.github.io/Bias-in-profi le-poisson-likelihood/

Spectra with few counts

- Are nothing special
- Poisson likelihood + good background handling
- 0 counts

• Think in terms of allowed regions

L, N_H from X-ray spectrum

L, N_H from X-ray spectrum

Practical advice

- You can do this in any package!
- State what you are doing
- CStat (Poisson)
- Background with functions (check fit)
- Visualise, visualise, visualise
- Show posterior distributions & fits in data space
- Vary priors & assumptions
- Use nested sampling, MCMC with care
- Make simulations
- Ask for help

Packages

- XSpec (NASA)
- Sherpa (SAO, Chandra)
- ISIS (MIT)
- Spex (SRON, high-res)
- and others ...

can do good and bad analyses with any of them

→ understand what you are doing & assuming

Resources

 Longer workshops, videos & slides https://johannesbuchner.github.io/BXA/tutorial

s.html

 Statistical Aspects of X-ray Spectral Analysis

https://arxiv.org/abs/2309.05705

• X-ray primer

https://cxc.cfa.harvard.edu/cdo/xray_primer.pd f Contact points for questions

- Ask a colleague
- Astrostatistics Facebook group
- XSPEC Facebook group
- Today's tutors
- Email me