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X-ray Spectral Analysis
1)    Likelihood

– Measurement process

– Background & source regions

– Linear algebra approximation

– Likelihood & statistics

2)    Bayesian inference
– Constraining physical parameters

– Differentiating models

– Treating backgrounds

Bayes theorem:
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Why X-rays?
● Hot plasmas

– Stars, Galaxy clusters, 
Inter-galactic medium

– Temperatures, 
turbulence, …

model examples: 
blackbody, mekal, apec

● Compact objects
– Black holes of all sizes, 

neutron stars, pulsars, 
…

– Accretion rate, spin, …

model examples: 
powerlaw, relxill, optxagn



Focussing x-rays
Wolter Telescopes

Incident
paraxial
radiation

Hyperboloid

Paraboloid

Hyperboloid
Focus

after ESA

To obtain manageable focal lengths (∼10 m), use two reflections on a
parabolic and a hyperboloidal mirror (Wolter) type
(Wolter 1952 for X-ray microscopes, Giacconi & Rossi 1960 for UV- and X-rays).

But: small collecting area (A  πr∼ 2 l/f where f: focal length)
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Detecting X-rays
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2d imaging with Charge Coupled Devices (CCDs)



RMF – detector response



Background

M. Wille

Cosmic rays & protons 

not going through the mirror



Files
● .pha or .pi  – spectrum, 

                     counts in channels
● .rsp or .rmf – response matrix
● .arf             – effective area
● bkg.pi        – background spectrum

Data archive for other missions: heasarc.gsfc.nasa.gov

Search for previous observations with xamin interface





Formal data analysis
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Formal data analysis

count rate in
channel c

(counts s−1)

detector response
(∝ probability to
detect photon of

energy E in
channel c).

effective area
(cm 2)

photon flux density
(ph cm2 s−1 keV−1),

We measure this Astrophysics is hereCalibration
(“response” / “rsp”)

background

1. Guess F(E)    – astrophysical model + parameter values
2. Predict N(c)
3. Compare prediction to actual number – Poisson statistics
4. Modify guess



Comparing 
predicted and 

observed counts



Single spectral bin
● Poisson

– k: integer
– λ: real (mean&variance)
– Asymmetric
– Integer
– Positive

● Scaling
● Addition
● Subtraction

Samples
Electronics (shot noise)
Photon counting (Poisson noise)

(Skellam distribution)

(Poisson distribution)
Variability!

λ

shape changes



Single spectral bin
● Poisson

– k: integer
– λ: real (mean&variance)

● Gaussian
– Mean (µ) & variance (σ²) = λ
– Mean (µ) & variance (σ²) = k
– real, can be negative

λ
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Approximation quality
● Tails have different slopes

– Gauss high-end more 
permissive

– Poisson low-end more 
permissive

● Right way: Poisson
● Historically: Gauss faster to 

evaluate

Best fits are biased (in %) 
if assuming chi² statistics

Humphrey et al. (2009), 
Mighell (1999)

Wheaton et al. (1995); Nousek & Shue (1989); Mighell (1999; van Dyk et al. (2001)



“Statistics”
● Poisson

– Likelihood

-2*log  →

● Gaussian
– Likelihood

-2*log  →



“Statistics”
● Poisson

– Likelihood

-2*log  →

● Gaussian
– Likelihood

-2*log  →

CStat, Cash

Chi²

Does not mean they follow a chi² distribution!

Cash (1979)



Multiple bins
● Poisson

 
● Gaussian

k1,λ1 k2,λ2



Multiple bins

k1,λ1 k2,λ2

Remember: 
λ=number / cm² / s / keV * dE * dt * dA
k=number

Flux 

Counts



Inference with likelihoods
-0.5 Cstat, -0.5 chi²

Higher L: model under these parameters often makes this 
data
Lower L: less frequently

 → Frequency of data

Likelihood function at D, at parameter values   (not a density)



Inference desiderata
● Parameter ranges allowed or probable (L, T, 

…, physical parameters) 

In infinitely small region: zero probability

Probability density

VolumeDensity

Probability mass

Find regions with high 
probability mass

Parameter space 
exploration



Parameter 
space 

exploration



Parameter space exploration

● Local optimization
– LM, simplex, … (many)

– Monte carlo optimization

● Local sampling: MCMC
– Tempering

– Limitations

● Global optimization
– Genetic algorithms (DE)

● Global sampling
– Nested sampling



Best fit parameters
● If away from boundary

● If model is linear

● If ndata  high→

● If θ is true parameter

 → then

(symmetric, 
single 
gauss)

If many data are created under 
logL interval -1/2 below best fit (Wilks’ theorem)

Contains true value 68% of realisations

Confidence interval

What was the question again?
Are conditions fulfilled?
What do unequal “errors” mean? 
2d?



Best fit parameters
● If away from boundary

● If model is linear

● If ndata  high→

● If θ is true parameter

(symmetric, 
single 
gauss)

Confidence interval

If conditions 
are not met

(always)

 → Monte Carlos simulations
                  (parametric bootstrap)

θin

Calibrate a

θ

L



Detection
● If away from boundary

● If model is linear

● If ndata  high→

● If θ is true parameter

(symmetric, 
single 
gauss)

If conditions 
are not met

(always)

 → Monte Carlos simulations
                  (parametric bootstrap)

θin=0
θ

LL

… p-values



Best fit distributions

θ

L
Convolution of 

True parameter distribution +
Measurement error & analysis method

Confidence intervals

Histogram of best fits

Cumulative distribution

Meaning?
Upper limits?

Clean solution:
Hierarchical Bayesian Model (HBM)

for example Baronchelli, Nandra & Buchner (2020)
https://github.com/JohannesBuchner/PosteriorStacker 

https://ui.adsabs.harvard.edu/abs/2020MNRAS.498.5284B/abstract
https://github.com/JohannesBuchner/PosteriorStacker


Sampling



Bayesian posterior

VolumeDensity

Probability mass

Find regions with high 
probability mass

θ

LL

Idea: Sample parameter solutions 
proportionally to their probability

For example with a grid



Posterior grid



Posterior grid



Bayesian posterior

θ

P

parameter solutions weighted by 
their probability

Credible intervals

Definitions:

Density  cumulative  → →
quantiles

Highest Density Intervals

Borders (upper limits)



  



  



  

Curse of dimensionality
● kd grid  infeasible→

● Sample θ
 θ1  θ2 θ3 ….

 w1 w2 w3 …. 

● Techniques:
– Importance sampling
– MCMC
– Nested sampling

(Posterior chains)



  

Using posterior chains
● Posterior chain

 θ1  θ2θ3 ….

● Find regions with high prob

● Compute prob. of regions

● Posterior predictions

● Derived quantities

P

q
10

     q
50

      q
90

P
P(x>4)= 
sample fraction

F, z  L, z→



Markov Chain Monte Carlo

θ

LL

Starting point θ

Loop forever:
θ’ = Normal(θ, sigma_p)
if P(θ’|D)/P(θ|D) > U():

θ = θ’
add θ to chain

x



MCMC

θ

LL

x

Emerging behaviour:

Starting point θ

Loop forever:
θ’ = Normal(θ, sigma_p)
if P(θ’|D)/P(θ|D) > U():

θ = θ’
add θ to chain



MCMC proposals
● Metropolis + Random Walk
● Goodman-Weare (emcee)

● HMC (Hamiltonian Monte Carlo)
 → animation

https://chi-feng.github.io/mcmc-demo/app.html

Random walk, HMC  

https://chi-feng.github.io/mcmc-demo/app.html


MCMC proposals
● Metropolis Random Walk

– Adv: simple
– Disadv: poor mixing

● Affine-invariant ensemble
– Adv: auto-tuning for gaussian L

– Disadv: poor mixing in bananas, collapses in high-d (Huijser+15)

● HMC (Hamiltonian Monte Carlo)
– Adv: tunes itself to surface
– Disadv: need gradients of models

Goodman & Weare (2010)
emcee



MCMC stopping
● MCMC theory: n inf→

● Trace plots
● Autocorrelation length
● Convergence tests

– Detect if unreliable
– Gelman-Rubin 

diagnostic
– (many more)

(by Eric Ford)

Phases:
Identification

Mixing

(burn-in) 



Escaping local maxima: strategies
● Multiple random start 

positions

– Augment local techniques

● Make surface easier

– Tempering/Annealing

● Walker population

– GW

– Genetic algorithms (DE)

L



Model 
comparison



Model comparison
● Empirical models

– Information content
– Prediction quality

● Component presence
– Regions of practical 

equivalence

● Physical effects
– Bayesian model comparison
– Priors often well-justified

https://arxiv.org/abs/1506.02273
Betancourt (2015)

Buchner+14

https://arxiv.org/abs/1506.02273


Information criteria
● Akaike information criterion
● Is more complex worth storing?

AIC = 2 * d – 2 * L
max

AIC = 2 * d + CStat

Akaike (1973)

Advantages: 
  - rooted in information theory
  - independent of prior

Disadvantages:
  - No uncertainties, thresholds 
unclear
  - …



  



  

Punishing prediction 
diversity

Flexible model Inflexible model Data

L high, V tiny L medium, V medium

(not number of 
parameters)



  

Posterior 
odds ratio

Prior
odds ratio

Bayes
factor



  

Buchner+14



Global 
sampling



  



  



  

Missing ingredients

● MCMC: Insert tuned transition kernel
● NS: Insert constrained drawing algorithm

● General solutions: MultiNest, MCMC, HMCMC, 
Galilean, RadFriends, PolyChord



  Animation:

https://johannesbuchner.github.io/mcmc-demo/app.html#RadFriends-NS,stan
dard
(via chi-feng.github.io)

https://johannesbuchner.github.io/mcmc-demo/app.html#RadFriends-NS,standard
https://johannesbuchner.github.io/mcmc-demo/app.html#RadFriends-NS,standard


  



  

Posterior 
odds ratio

Prior
odds ratio

Bayes
factor



  

Buchner+14



  

Calibrating model 
decisions

● Model probabilities  decisions→

● False decision rate (false positives/negatives)

– Monte Carlo simulations (parametric 
bootstrap) Buchner+14



  

Calibrating model decisions
Buchner+14

False negatives 
Non-decisions

wabs input

powerlaw 
input

wabs input

powerlaw 
input

Advantages:
- Get rid of parameter prior dependences
- Have frequentist properties of Bayesian method
- Completely Bayesian treatment + decisions

Disadvantages:
- Can be computationally expensive



  

Frequentist properties of 
Bayesian methods

● Make decisions
– Is parameter greater than C?
– Is this model “better” than the other?

● Parametric bootstrap
– Monte Carlo simulation allow arbitrary 

complexity



  

Model comparison
Test model in isolation?

PPC
Parametric bootstrap

Compare physical models or
empirical descriptions?

yes

no, relative

Information content (AIC)
Prediction quality (Cross validation)

empirical

physical 
effects

Additive component
Parameter estimation
Region of equivalence

Bayesian model comparison

yes

no

Bayesian model comparison



Backgrounds



Backgrounds

k1S,λ1S

k1B,λ1B

ksrc,λsrc,tsrc,Asrc

kbkg,λbkg,tbkg,Abkg

Assume time, location-
independence



Background + Source
+

Assumptions:
- area energy-
independent
- rate constant with 
area, time, location

Remember: 
λ=number / cm² / s / keV * dE * dt * dA



Background + Source

Remember: 
λ=number / cm² / s / keV * dE * dt * dA

Assumptions:
- area energy-
independent
- rate constant with 
area, time, location



Background + Source
● src+bkg Gauss  Gauss (subtractable, flats/darks)→

● src+bkg Poisson  Poisson→

– High counts (>100) in every single src and bkg bin  Gauss + Subtract with bkg →
variance propagation

– Subtract & model with Skellam distribution

– Do the right thing and model both as Poisson
● Poisson estimate of rate in each bin, independently
● Function approximation of background

– In counts (empirical model)
– Physical background flux model

– Fit simultaneously with source
– Fit background model first, use best-fit background shape for source fit



Background + Source
● src+bkg Gauss  Gauss (subtractable, flats/darks)→

● src+bkg Poisson  Poisson→

– High counts (>100) in every single src and bkg bin  Gauss + Subtract with bkg →
variance propagation

– Subtract & model with Skellam distribution

– Do the right thing and model both as Poisson
● Poisson estimate of rate in each bin, independently
● Function approximation of background

– In counts (empirical model)
– Physical background flux model

– Fit simultaneously with source
– Fit background model first, use best-fit background shape for source fit

(“WStat”, default in xspec 
if you set statistic “cstat”)



Background + Source

Remember: 
λ=number / cm² / s / keV * dE * dt * dA

Assumptions:
- area energy-
independent
- rate constant with 
area, time, location



eROSITA background
● Diffuse emission

– Local hot bubble
– Galactic disk
– Galactic halo

● Cosmic 
background
– Unresolved AGN

● High-energy 
particle 
background

https://wiki.mpe.mpg.de/eRosita/ScienceRelatedStuff/Backgro
und

 

https://wiki.mpe.mpg.de/eRosita/ScienceRelatedStuff/Background
https://wiki.mpe.mpg.de/eRosita/ScienceRelatedStuff/Background


Semi-physical background models

Maximize poisson 
likelihood at all bins
→shape 

NuSTAR (Wik+14) 
 → especially important for extended source

Particle background
Cosmic background
Instrumental background
… 
Location & time-
dependent



Empirical background 
models

Maximize poisson 
likelihood in each bin
→shape 

Chandra

(XMM, Chandra, Swift/XRT models in BXA)

Pros: 
● Can contain physical 

knowledge & smoothness
● Small uncertainties
● 0 bin counts ok
Cons: 
● Need to specify model
● Fit can be poor



Empirical background 
models

Automated shape finding 
Simmonds, Buchner et al. (2017)

XMM/PN,MOS, Chandra/ACIS, NuSTAR, 
Suzaku, RXTE, Swift/XRT



Background: Individual bins

Estimate most likely background rate in each bin 

Add scaled to source region counts

(wstat, Xspec default if set to cstat with no 
background model)
pgstat

Pros: 
● no model specification needed
Cons: 
● no continuity
● unnecessarily large uncertainties
● need >0 counts per bin
● Need >3 counts per bin, otherwise 

biased!
● https://giacomov.github.io/Bias-in-profi

le-poisson-likelihood/
 

https://giacomov.github.io/Bias-in-profile-poisson-likelihood/
https://giacomov.github.io/Bias-in-profile-poisson-likelihood/


Spectra with few counts
● Are nothing special
● Poisson likelihood + good background 

handling
● 0 counts

● Think in terms of allowed regions

N

T



L, N
H
 from X-ray spectrum

Scattered Powerlaw component

CTK flat spectrum + 
FeK line



L, N
H
 from X-ray spectrum

Probability cloud



  

Practical advice
● You can do this in any package!
● State what you are doing
● CStat (Poisson)
● Background with functions (check fit)
● Visualise, visualise, visualise
● Show posterior distributions & 

fits in data space
● Vary priors & assumptions
● Use nested sampling, MCMC with care
● Make simulations
● Ask for help



Packages
● XSpec             (NASA)
● Sherpa            (SAO, Chandra)
● ISIS                 (MIT)
● Spex               (SRON, high-res)
● and others … 

can do good and bad analyses with any of 
them

 → understand what you are doing & assuming



Resources
● Longer workshops, videos & slides

https://johannesbuchner.github.io/BXA/tutorial
s.html

● Statistical Aspects of X-ray Spectral 
Analysis

https://arxiv.org/abs/2309.05705 
● X-ray primer

https://cxc.cfa.harvard.edu/cdo/xray_primer.pd
f
 

https://johannesbuchner.github.io/BXA/tutorials.html
https://johannesbuchner.github.io/BXA/tutorials.html
https://arxiv.org/abs/2309.05705
https://cxc.cfa.harvard.edu/cdo/xray_primer.pdf
https://cxc.cfa.harvard.edu/cdo/xray_primer.pdf


  

Contact points for 
questions

● Ask a colleague
● Astrostatistics Facebook group
● XSPEC Facebook group
● Today’s tutors
● Email me
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