Diffuse X-ray emission

Gabriele Ponti (INAF-OA Brera, MPE) and the Hot Milk team

Observer oriented view

Composition of diffuse emission

Discussion of different components

The Hot Milk project The hot phase of the Milky Way and Milky Way-like galaxies

Outline

What is the diffuse X-ray emission?

What is the diffuse X-ray emission?

Everything which is not point like?

Short answer: None and all... Long answer: We need to understand the composition of the X-ray diffuse emission and-or background!

What is the relation between diffuse emission and X-ray background?

What is the correct choice?

Instrumental background

Sky background (diffuse emission)

Instrumental background

Filter wheel closed emission

Instrumental background

Filter wheel closed emission

X-ray telescope (XMM)

Cosmic ray

Secondary particles

Cosmic ray

Energy release → X-ray photon X-ray detector

Composition of the Radiography of the

Instrumental background

Filter wheel closed emission

doubles/s/keV

detector and electronics

EPIC pn : Mo-Ka [17.1-17.7 keV]

Instrumental background

eROSITA effective area

Instrumental background

doubles/s/keV

Instrumental background

- Filter wheel closed emission
- Soft protons flares

Instrumental background

Filter wheel closed emission

Soft protons flares

Instrumental background

- Filter wheel closed emission
- **Soft protons flares**

Stray-light

9.032

Straylight

Instrumental background

- Filter wheel closed emission
- Soft protons flares
- Stray-light
- Light leak, Optical loading, Ghost rays, Out of time events, etc, etc, etc.

Instrumental background

- Filter wheel closed emission
- **Soft protons flares**
- Stray-light
- Light leak, Optical loading, Ghost rays, Out of time events, etc, etc, etc.

Sky background (diffuse emission)

- Solar wind charge exchange
- Local hot bubble
- Hot interstellar medium
- Galactic ridge X-ray emission
- Hot circumgalactic medium
- **Galactic outflow**

- **Everything which** is not point like?
- **Cosmic X-ray background**
- **Absorption: complicating factor...**
- **Point sources or diffuse emission?**

- **X-Diffuse**
- 1) SWCX
- 2) LHB ISM
- 3) Galactic ridge
- 4) Hot CGM
- 5) Outflow
- 6) CXB

Solar wind charge exchange

X-Diffuse 1) SWCX

- 2) LHB ISM
- 4) Hot CGM
- 5) Outflow
- 6) CXB

3) Galactic ridge

Kuntz+19

Diffuse X-ray emission from Heliosphere

Dennerl, GP+subm.

X-Diffuse
1) SWCX
2) LHB - ISM
3) Galactic ridge
4) Hot CGM
5) Outflow

Solar wind charge exchange 10

Kuntz+19

(AU)

0.08 **Characterisation of heliospheric** solar wind charge exchange

0.06

(AU)

1) SWCX

Local hot bubble

A Bubbly Origin for Stars Around the Sun

X-Diffuse

2) LHB - ISM

X-Diffuse What is the interstellar medium made of? 1) SWCX 2) LHB - ISM

Table 1: Components of the interstellar medium^[3]

Component	Fractional volume	Scale height (pc)	Temperature (K)	Density (particles/cm ³)	State of hydrogen	Primary observational techniques	Wik
Molecular clouds	< 1%	80				Warn • Loo	n inte
Cold net mediui (CNM	ot /arm-h /arm -		**	- 7		• Ion	ized
Warm neutra mediui (WNM)	arm H old HI		0)		Hot i • Dil	nterc ute S
Warm ionized medium (WIM)	20–50%	10(• Eva	ized
H II regions	< 1%	7(Tepic • Loc • Eva	l inte cal ho apora
Coronal gas Hot ionized medium (HIM)	30–70%	1000– 3000	10 ⁶ –10 ⁷	10 ⁻⁴ -10 ⁻²	ionized (metals also highly ionized)	absorption lines of highly ionized metals, primarily in the ultraviolet	C

kipedia

ercloud gas NRs regions

cloud gas NRs ating clouds surfaces

rcloud gas otter regions ating clouds

ox 05

 From escaping hot intercloud gas Or, a hot halo

Galactic fountain 1

 From escaping hot intercloud gas which cools

Galactic fountain 2

 From superbubbles breaking out above the disk

Thick quiescent disk

- Superbubbles confined
- Spiral density waves
- Ionization mechanism?

|e

What is the interstellar medium made of?

Table 1: Components of the interstellar medium^[3]

Component	Fractional volume	Scale height (pc)	Temperature (K)	Density (particles/cm ³)	State of hydrogen	Primary observational techniques
Molecular clouds	< 1%	80	10–20	10 ² –10 ⁶	molecular	Radio and infrared molecular emission and absorption lines
Cold neutral medium (CNM)	1–5%	100– 300	50–100	20–50	neutral atomic	H I 21 cm line absorption
Warm neutral medium (WNM)	10–20%	300– 400	6000–10000	0.2–0.5	neutral atomic	H I 21 cm line emission
Warm ionized medium (WIM)	20–50%	1000	8000	0.2–0.5	ionized	Ha emission and pulsar dispersion
H II regions	< 1%	70	8000	10 ² –10 ⁴	ionized	Ha emission, pulsar dispersion, and radio recombination lines
Coronal gas Hot ionized medium (HIM)	30–70%	1000– 3000	10 ⁶ —10 ⁷	10 ⁻⁴ –10 ⁻²	ionized (metals also highly ionized)	X-ray emission; absorption lines of highly ionized metals, primarily in the ultraviolet

Vikipedia

Diffuse X-ray emission: local hot bubble

IC 5332

JWST

Mainly Interstellar medium

Holes

Are the holes like the **local hot bubble?**

X-Diffuse 1) SWCX 2) LHB - ISN

Mainly stars

HST

The Cosmic X-ray background

ROSAT PSPC The Moon June 29 1990

The Galactic ridge X-ray emission

The Galactic ridge X-ray emission

Krivonos +07

X-Diffuse 1) SWCX 2) LHB - ISM 3) Galactic ridge

17-60 keV

The Galactic ridge X-ray emission

Revnivtsev +09

Close to (~1°) Galactic center Galactic ridge resolved (>80%) in point sources

Revnivtsev +09

Revnivtsev +09

≥°

C

0

2

 $L > 10^{41} \text{ erg s}^{-1}$

Is this true???

Short summary:

X-Diffuse

- 3) Galactic ridge

0.2-2.0 keV

European The hot phase of the Milky Way erc Research Council 800 70° 60° 60° 50° 50° 40° ~160 40° light years 30° 30° 20° 20° 10° 10° Sagittarius A 2 -20° -20° **∠30°** -30° -40° -40° -50° -50° -60° -60° -70° -70% -80° -80°

Gabriele Ponti (INAF-OA Brera, MPE) and the Hot Milk team

X. Zheng, N. Locatelli, M. Yeung, H. Zhang, Y. Zhang, K. Anastasopoulou, S. Mondal, G. Stel, S. Mackey, J. Knies, T. Liu, J. Comparat, K. Dennerl, A. Merloni, J. Sanders, M. Sasaki, M. Morris, K. Egg, M. Freyberg, S. Shreeram, A. Strong

How do galaxies evolve?

The Baryon cycle

Tumlinson +17

10⁶⁻⁷ K

300 kpc

Hot Baryons: Bulk of Baryons Re-condensation Driver outflows

The CGM in realistic simulations

AGN and Starbursts influence CGM

AGN

MS 0735.6+7421: Chandra/Hubble/VLA

Starburst

M 82: Hubble/Spitzer/Chandra

Understand feedback between nucleus and CGM

Do normal galaxies influence their CGM?

Does the nuclear activity of quiescent galaxies influence their CGM?

Let's look to the Milky Way

M83: Subaru/ESO/Hubble

Hot plasma to trace past activity

Si xiii, S xv, Ar xvii

Atlas of all (~15) SNR in the region $3.5 \times 10^{-4} \text{ yr}^{-1} < \text{SN rate} < 15 \times 10^{-4} \text{ yr}^{-1}$ Massive kinetic energy input ~ 1.1×10⁴⁰ erg s⁻¹

→ Powering outflows to Galactic center lobe?

Law +11; Crocker +11; 12; Yoast-Hull +14; Jouvin +15

140 pc

1 deg

Ponti +15

Name	Other name	Coordinates (1, b)	Size arcsec	Refere
STAR CLUSTERS:				
Central star cluster		359 9442 -0.046	0.33	45 116 1
Ouintunlet		0 1604 -0 0591	0.5	1.63
Arches	G0 12+0 02	0 1217 0 0188	0.7	12345678
Sh2-10	DB00-6	0.3072 -0.2000	1.92	10 11 12
Sh2-17	DB00-58	0.0013.0.1588	1.65	13.63
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63
SNR - RURRI FS - 9	SUPER_RUBBLES			
G359 0.0 9	G358 5-0.9 - G359 1-0.9	359.03 -0.96	26×20	X-R 48 51 75 7
G359.07-0.02	G359.0-0.0	359.07 -0.02	20×20 22 × 10	R 14 48
0559 41-042	G359 12-0.05	359.12 -0.05	24×10 24×16	X 6
G359 10-0 5	0339.12-0.03	359.12,-0.05	24×10 22 × 22	X-R 37 48 51 56 7
G359.41-0.12		359.41_0.12	22 × 22 3 5 × 5 0	X 1
Chimney		359.41,-0.12	68 2 9 3	X 1
Case 73-0 35+		359,40,40,04	0.0 × 2.0	X S
G359.77-0.00	Superhubble	359.75,-0.55	$\frac{1}{20} \times 16$	X 15 16
0559.17-049	G350 70 026h	359.04,-0.14	20 × 10	X 15,10, X 15,16
	G0.0.0.16++	0.00.016	0 × 0.2	X 15,10,
C250 87+0 44	G0.0-0.10	350 97 10 44	11 🗸 5	
0559.67±0.44	G359.85+0.39	559.67,+0.44	11 X 0	К 4
20nc Sgr A*'s lobes	00000000000	359.940.04	5.88	R 32.33.
G359.92-0.09t	Parachute - G359 93-0 07	359.930.09	1	R 35 38 43 4
Sor A East	G0.0+0.0	359.9630.053	3.2×2.5	X-R 5.18.19.2
G0.1-0.1	Arc Bubble	0.1090.108	13.6×11	X This
	G0.13-0.12b	0.13-0.12	3 × 3	X 1
G0.224-0.032		0.224 -0.032	2.3×4.6	X This
G0 30+0 04	G0 3+0 0	0.34 +0.045	14×8.8	R 21 48 5
00.0010.01	G0 34+0 05	0.01,10.010	11 / 0.0	11 = 1,10 p
	G0.33+0.04			
G0.40-0.02	Suzaku J1746.4-2835.4	0.40,-0.02	4.7 imes 7.4	X 2
	G0.42-0.04	-		
G0.52-0.046		0.519,-0.046\$	2.4 imes 5.1	This w
G0.57-0.001		0.57,-0.001	1.5 imes2.9	This w
G0.57-0.018†	CXO J174702.6-282733	0.570,-0.018	0.2	X 23,24,58,
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2 imes 4.8	X 22,6
G0.9+01♡	SNR 0.9+0.1	0.867.+0.073	7.6 imes7.2	R 25,26,27,28,2
DS1	G1.2-0.0	1.17,+0.00	3.4×6.9	X 3
Sgr D SNR	G1.02-0.18	1.02,-0.17	10×8.0	R 30,31,48,51.
-	G1.05-0.15	-		
	G1.05-0.1			
	G1.0-0.1			

Ponti +15

G1.4-0.1

1.4,-0.10

10 imes 10

R 73,81,82

The Galactic center Chimneys

Galactic longitude

Galactic longitude

Outflow has radio counterpart

Multi-phase multi-epoch Galactic outflow

Hot plasma (X-rays) warm dust (mid-IR) \rightarrow shocks (radio)

Coherent features on > 10^2 pc scales

→ Deeply interconnected and linked to the Galactic outflow

→ Strong shocks at the chimney-ISM interface

a)

Ğ

Can we do more with eROSITA?

Rosat 0.9-2 keV Galactic longitude

Normal galaxies hold outflows to CGM

eROSITA (Spektr-RG)'s launch Baikonur, July 13th, 2019

Source: Roscosmos

Map the flows of hot Galactic Baryons

Rosat all-sky soft X-ray survey

European Research Council

Global outflow?

erc

Fountains?

Milky Way center

Map the flows of hot Galactic Baryons

European Research Council

Milky Way center

eROSITA (first 6 months)

Is the plasma volume filling? Shock heated?

Connection between Fermi & eROSITA bubble

X-rays: eROSITA y-rays: Fermi

Different manifestations of the same outflow? Two distinct events? Work in progress...

See also Yang+22; Gupta+22

Properties of the eROSITA bubbles!

Summary of properties

Distance: GC ~8 kpc Brightness: 6×10³⁸ erg s⁻¹ 0.3 keV kT: T_{cool}: 1.9×10⁸ yr 1.3×10⁵⁶ erg **E**_{Ther}:

→ 10 times larger volume

 \rightarrow 10 times more energy than Fermi bubbles

To inflate → L~10⁴¹ erg s⁻¹ for few 10⁷ yr

-> Strong impact on CGM!

Other traces of the outflow? Very hot plasma

Si xiii, S xv, Ar xvii

Sgr A*'s recent activity → No hope...

Excess of very hot plasma within central degree? L > 10⁴¹ erg s⁻¹ Uchiyama +11

eROSITA bubbles L~1041 erg s-1 for few 107 yr

Recent star formation: Massive kinetic energy input ~ 1.1×10⁴⁰ erg s⁻¹

Other traces of the outflow? Very hot plasma

Are eROSITA bubbles common in galaxies?

→ common in galaxies!

Gas $L_{X,0.5-2keV}$ [log erg s⁻¹ kpc⁻²]

Magnetised outflow from the Galactic center

S-PASS: tracing magnetised plasma

0.017

0

Northern ridge Galactic Centre spur Southern ridge

0.051

0.034

0.068

Lobes permeated by magnetic fields of **B~15 microgauss**

Carretti+13

P (Jy per beam)

Magnetised spurs emerging from the disc

0.017

Polarised synchrotron intensity from WMAP (22.8 GHz)

Magnetic field direction from polarised synchrotron

The non-thermal component of the outflow

Polarised synchrotron intensity: WMAP 22.8 GHz X-rays: eROSITA 0.6-1 keV

Magnetic field direction

Galactic outflow -> shaping the magnetic halo

The Galactic outflow plugs on star forming ring

Magnetic field line feel halo differential rotation

Fermi Bubbles

eROSITA outer halo

Magnetic halos are common in galaxies

Zhang+24

Green: 2MASS H-Band Red: Chandra 0.3-2keV White: 3.6cm Effelsberg

> X-ray Galactic Outflows

1.6um dust shows the galactic disc

Magnetic halo

Background: Hodges-<u>Kluck</u> & Bregman2013 Magnetic Field: Krause 2009

The Milky Way has a powerful outflow!

Does the Milky Way host a hot CGM?

The view before eROSITA...

All XMM archive to study the Milky Way CGM

\rightarrow beta model with $\beta = 0.50 \pm 0.03$ $M_{halo} \sim 4.3 \times 10^{10} M_{\odot} \rightarrow \sim 50^{\circ} M_{\odot}$ of missing baryons

SKV

Miller & Bregman+15

Chandra survey of edge-on spiral galaxies

Apart from outflows in special cases (e.g. M82) → Little evidence for an extended halo **Emission from disc-halo interface** (charge exchange? galactic atmosphere?)

Then eROSITA arrives....

The soft X-ray Universe: eROSITA images...

The half sky images of eROSITA

Morphology of the circumgalactic medium 08c05

Spherical halo? (beta model?)

Both are required! (But disc is dominant)

Or Exponential disc? (corona? stars?)

Locatelli, GP+24a; see also Bluem+22

I_{βmod}/I_{disk}

The merging of the LMC's CGM with ours

Tumlinson +17

10⁶⁻⁷ K

300 kpc

The power of eROSITA's spectra

Decomposing the soft X-ray background

What is the composition of the X-ray background?

The warm-hot CGM in the eFEDS field

Ponti+23 CXB 0.1 CGM SWCX **Bad fit...** 5 0 -CGM-CXB-SW 0.5 Energy (keV) LHB: Local hot bubble **CGM: Circum Galactic medium** CXB: Cosmic X-ray background SWCX: Solar wind charge exchange $Corona \rightarrow Required!$

The power of eROSITA's spectra over the half sky

The composition of the X-ray background

Sky Tiles 3×3°

Our new view of the hot CGM

Tumlinson +17

Yes, also quiescent galaxies have powerful outflows

Predehl+20; Yang+22; Mou+23; Gupta+23; Sharkar 24; Zhang+24

Shell at the edge between outflow & unperturbed CGM Zheng+24

We constrain the temperature fluctuations of the CGM Zheng+24

Virial halo (β model) + hotter disc component Bluem +22; Ponti+23; Locatelli+24a

- Is Goat Horn the collision of LMC & MW? Locatelli+24b; Carr+24
- Deeper view of local interstellar medium Yeung+2
- Characterisation of heliospheric emission

Great!

But do other galaxies have hot CGM? Can we go beyond few tens kpc?

Our new view of the hot CGM

Tumlinson +17

Yes, Milky Way-like galaxies do have hot CGM with β~0.4

Zhang+24a; +24b; +24c

Conclusions: Our new view of the hot CGM

Yes, also quiescent galaxies have powerful outflows

Predehl+20; Yang+22; Mou+23; Gupta+23; Sharkar 24; Zhang+24

Shell at the edge between outflow & unperturbed CGM Zheng+24

We constrain the temperature fluctuations of the CGM Zheng+24

Virial halo (β model) + hotter disc component Bluem +22; Ponti+23; Locatelli+24a

- Is Goat Horn the collision of LMC & MW? Locatelli+24b; Carr+24
- **Deeper view of local interstellar medium**
- **Characterisation of heliospheric emission**
- Yes, Milky Way-like galaxies do have hot CGM
 - with $\beta \sim 0.4$ Zhang+24a; +24b; +24c
- The eROSITA bubbles have a non-thermal component
- → The star forming ring at the end of the bar contributes to the Galactic outflow

Zhang +24a

Final summary:

Instrumental background

- Filter wheel closed emission
- **Soft protons flares**
- Stray-light
- Light leak, Optical loading, Ghost rays, Out of time events, etc, etc, etc.

Sky background (diffuse emission)

- Solar wind charge exchange
- Local hot bubble
- Hot interstellar medium
- Galactic ridge X-ray emission
- Hot circumgalactic medium
- **Galactic outflow**
- **Cosmic X-ray background**
- **Absorption: complicating factor...**
- **Point sources or diffuse emission?**

