

eROSITA - Science and Data Analysis School

eROSITA cameras

Norbert Meidinger (Max-Planck-Institut für extraterrestrische Physik) 18 November 2024

18 November 2024

eROSITA cameras - N. Meidinger (MPE)

What is such a camera good for?

- Measurement of energy of single X-ray photons E(photon)
- Measurement of incidence time t (with accuracy Δt)
- Accurate source location by high spatial resolution
- Photon detection probability determined by quantum efficiency

What you should consider:

- Operation of the detector (voltages, timing, operating mode) \rightarrow Electronics
- Telemetry rate limitation from satellite to ground → onboard data reduction
- Vibration-resistant (launch!)
- Low mass, low heat dissipation, cooling
- Shielding of visible light → optical blocking filter
- Re-calibration of signal gain + charge transfer efficiency → onboard calibration source

•

Operation in space: stable performance, life time

Overview

- **1. Detector Design**
- 2. Detector Performance
- 3. eROSITA Camera
- 4. Launch and operation in space

1. Detector Design

PNCCD Detector

EPIC-PN

XMM-Newton

1. Detector Design

1. Detector Design

Overview

- **1. Detector Design**
- **2. Detector Performance**
- 3. eROSITA Camera
- 4. Launch and operation in space

All CCD Detector Modules tested in GEPARD chamber at MPE with ⁵⁵Fe

- \rightarrow voltage optimization
- \rightarrow functional test + performance at 5.9 keV
- FWHM(5.9keV) = \sim 129 $\rightarrow \sim$ 140eV (lab \rightarrow flight electronics!)
- σ ≈ 2.5 el. ENC
- CTI ~ 10⁻⁵, gain (1.2adu/eV), # bad pixels ...
- Later: calibration at PUMA and Panter test facilities (MPE)

eROSITA cameras - N. Meidinger (MPE)

Normalized AI-K (1.5 keV) photon distribution over CCD area: ⇒ Check verifies uniformity of detector sensitivity 100 150 200 250 300 350 1,10 (within the limits of statistics) 1,05 1,00 Kelenyelehendendenderderderderder die seine Alexa verster-0.950.90Histogram of measured # photons per pixel: 30C 250 6000 5000 200 4000 Counts 15C 3000 1 O C 2000 50 1000 1.2 0.8 0.9 1.0 0.7 1.1 1.3 0° 0° 2 O_{3} *"*., Normalized photon distribution 0.70.8 0.9 1.0 1.2 1,1 Normalized photon distribution

eROSITA cameras - N. Meidinger (MPE)

Gaussian fit

Overview

- **1. Detector Design**
- 2. Detector Performance
- 3. eROSITA Camera
- 4. Launch and operation in space

Detector housing:

- Mech. + thermal I/F
- Graded Z-shield: Be/B₄C Al Cu

 $(\rightarrow \text{minimization of instrumental background})$

• Proton shield

3. eROSITA Camera (Assembly)

eROSITA

Filter wheel

Filter wheel with aperture and motor

Filter position

Open position

 a) EUV blocking filter (100nm PI) for CCDs + on-chip filter (200nm AI) TM1, TM2, TM3, TM4, TM6 with on-chip OBF filter
 b) entired blocking filter (100nm Al 100nm PI) for CCDs w/s on chip filter

- optional: CCDs with on-chip filter permit observations

 b) optical blocking filter (100nm Al+100nm Pl) for CCDs w/o on-chip filter TM5, TM7 with OBF in filter wheel

Onboard calibration position

- venting of camera system

⁵⁵Fe + Al-Ti target: Mn-K_α + Mn-K_β (5.9 keV, 6.5 keV) + Ti-K_α (4.5 keV) + + Ti-K_β (4.9 keV) + Al-K (1.5 keV)

- Closed position
- on ground \rightarrow protection
- in space \rightarrow instrument background

Filter mounted on support structure

18 November 2024

eROSITA cameras - N. Meidinger (MPE)

15

HILGO425 0005 EVENTS 0.4ta(EVENTS)

3. eROSITA Camera

On-board calibration source spectrum

3. eROSITA Camera Tests with QM/FM camera/s

Vibration Test 🗹

Thermal Cycling Tests of QM detector (T_{op} =-105°C) \checkmark

Thermal Cycling Tests of QM electronics (T_{op} = +25°C / -24°C)

Performance Test of Camera Assembly in PUMA facility

- flight-like configuration
- onboard calibration source + multi-target X-ray tube

eROSITA flight camera energy resolution and QE calibrated on ground

	TM1	TM2	TM3	TM4	TM5	TM6	TM7	QE12346	QE57
C-K at 0.277 keV	58 ± 0.3	58 ± 0.3	58 ± 0.4	58 ± 0.3	50 ± 0.2	58 ± 0.4	49 ± 0.2	12.4 ± 1.7%	31.3 ± 4.4%
O-K at 0.525 keV	64 ± 0.2	65 ± 0.3	66 ± 0.3	64 ± 0.2	57 ± 0.3	63 ± 0.2	56 ± 0.4	$42.2 \pm 1.6\%$	$51.3 \pm 2.1\%$
Cu-L at 0.93 keV	70 ± 0.3	74 ± 0.3	72 ± 0.3	70 ± 0.3	68 ± 0.3	70 ± 0.3	68 ± 0.3	$80.0 \pm 4.5\%$	83.2 ± 4.7%
Al-K at 1.49 keV	77 ± 0.3	82 ± 0.3	80 ± 0.3	77 ± 0.3	75 ± 0.3	77 ± 0.3	77 ± 0.2	$94.0 \pm 4.1\%$	94.8 ± 4.2%
Ti-K α at 4.51 keV	118 ± 0.5	125 ± 0.6	122 ± 0.6	118 ± 0.6	116 ± 0.6	118 ± 0.6	117 ± 0.6	97.9 ± 2.2%	98.2 ± 2.2%
Fe-K α at 6.40 keV	138 ± 0.6	145 ± 0.7	142 ± 0.7	138 ± 0.6	135 ± 0.7	138 ± 0.7	136 ± 0.7	$98.9 \pm 2\%$	99.1 ± 2%
Cu-K α at 8.04 keV	158 ± 0.7	167 ± 0.7	163 ± 0.7	159 ± 0.7	155 ± 0.6	159 ± 0.6	156 ± 0.7	99.3 ± 2%	99.4 ± 2%
Ge-K α at 9.89 keV	178 ± 1.0	181 ± 1.0	182 ± 1.1	173 ± 1.1	170 ± 1.0	174 ± 1.1	175 ± 1.0	$96.9 \pm 2\%$	96.9 ± 2%

! eROSITA camera performance better than that of XMM-Newton EPIC PN !

eROSITA telescope array assembled at MPE

Size: 1.9 m Ø x 3.5 m Mass: 808 kg Power: 522 W (max.) Data rate: 400 MB/day (average) 600 MB/day (max.)

Camera array volume should have been light-tight by means of MLI foil cover but it was not \rightarrow CA5+CA7 w/o on-chip filter affected)

Overview

- 1. Detector Design
- **2.** Detector Performance
- 3. eROSITA Camera
- 4. Launch and operation in space

Launch on 13 July 2019 (12:31 UTC)

eROSITA Camera Commissioning + Operation

- 23 July 2019: Telescope cover opens. Outgassing period begins
- 29 July 2019: Start of CE commissioning
- 22 August 2019: Cool-down and start of camera commissioning (one by one)
 - → all 7 cameras fully functional similar performance as measured on ground
 (but light leak in focal plane MLI cover affects perf. of 2 CCDs w/o on-chip OBF)
- 16-18 October 2019: First light (LMC) with all 7 TMs
- 18 October 8 December 2019: Calibration and performance verification program
- 12 December 2019: Start of all-sky survey
- 26 February 2022: eROSITA in safe mode
 18 November 2024 eROSITA cameras N. Meidinger (MPE)

TM6: cal-source spectrum measured in space

First light. LMC region centered on the supernova SN1987A (Red, green, and blue: X-ray intensities 0.2–1.0, 1.0–2.0, and 2.0–4.5 keV)

Credit: F. Haberl, M. Freyberg, C. Maitra

LMC/SN1987A MPE/IKI

18 November 2024

SRG/eROSITA (0.2-4.5 keV)

lssues

- Thermal system problem (1 of 2 VCHPs) → T ≈ -85° ... -80°C instead of planned -95°C
- Light leak in focal plane volume: TM5 and TM7 affected (slightly worse energy resolution)
- SEU once per week caused by particle in FPGA XILINX Virtex-4

(issue: not sufficient resources for complete Triple Module Redundancy implementation)

 \rightarrow CE reset (not detector) necessary (optimization of f/w planned)

None of the issues was an obstacle to the success of eROSITA

Energy resolution similar good as on ground

(single events – needed for CTE and gain correction)

Space: Spectral line energy	F bea	\ cause of	M6 VHM • n ∍V)	TM7 FWHM (eV)			
Al-K: 1.49 keV	74. b	ut also d	due to ra	diation	damage	± 0.7	90.2 ± 1.2
Ti-Kα: 4.51 keV	116.5 ± 0.4	120.3 ± 0.5	118.3 ± 0.5	115.9 ± 0.4	118.1 ± 0.6	115.2 ± 0.4	128.0 ± 0.6
Ground: Al-K: 1.49 keV	$\textbf{73.5} \pm \textbf{0.5}$	76.7 ± 0.5	75.2 ± 0.5	73.2 ± 0.5	$\textbf{72.1} \pm \textbf{0.5}$	$\textbf{73.4} \pm \textbf{0.5}$	$\textbf{73.0} \pm \textbf{0.4}$
Ti-Kα: 4.51 keV	113.6 ± 1.2	117.5 ± 1.4	115.7 ± 1.4	113.7 ± 1.3	111.9 ± 1.4	113.6 ± 1.3	113.1 ± 1.3

 \rightarrow similar on ground and in space apart from TM5 and TM7:

eROSITA had best prerequisites to achieve its scientific goals

eROSITA cameras - N. Meidinger (MPE)

4. Launch and operation in space Micro-meteoroid impact

7 impacts observed since launch until 2022 (2 x TM2, 2 x TM4, 1 x TM5, 2 x TM7)

 \rightarrow pixel defects

eROSITA cameras - N. Meidinger (MPE)

Addendum

Same PN-CCD detector type and X-ray optics as used for eROSITA are in operation on the Chinese-European

X-ray mission **Einstein Probe**

"A New Horizon in Detecting Cosmic X-ray Transients"

- launched on January 9, 2024
- FXT comprising 2 telescopes with eROSITA type PN-CCD detectors

Thank you !