

Laboratory detection of 2,5- and 2,4-cyclohexadien-1-thione

Mitsunori Araki, Christian Endres, Valerio Lattanzi, and Paola Caselli Max-Planck-Institut für extraterrestrische Physik, Garching, Germany

Abstract

- Neon.
- The rotational constants have been determined.
- detection.

Introduction

Results and Discussion

ethynyl benzene Loru+ 2023

ethynyl cyclopentadiene Cernicharo+ 2021a

fulvenallene Cernicharo+ 2022

cyclopentadiene Cernicharo+ 2021b

indene Cernicharo+ 2021a Cernicharo+ 2021b

Figure 1 Observed sulfide aromatic molecules in space

• The 325 species of interstellar molecules have been found in space (Araki).

benzyne

- The most recent appearance of a new molecular group has started since the discovery of benzonitrile by McGuire et al. (2018) in the Taurus molecular cloud 1 (TMC-1). At present 12 species have been detected except for benzene (Cernicharo et al. 2001) (Figure 1). Half of them have a doubly hydrogenated carbon (-CH₂-) in the ring (red circles in Figure 1).
- However, sulfide aromatic molecules have not been detected yet, although sulfide species accounts for 12% of the 325 species.
- Lack of rest frequency data of sulfide aromatic molecules by laboratory spectroscopy would be the main reason for the undiscovered.
- To find a sulfide aromatic molecule, a molecule having strong rotational lines need to be investigated.

Figure 4

Upper trace: Simulated rotational transitions of 2,5-cyclohexadien-1-thione (red) and 2,4-cyclohexadien-1-thione (green) at 5 K Lower trace: Observed rotational lines in the 18-26 GHz region. These lines include those of the sample gas, thiophenol, and the known discharge produces, CCCS, CCS, H_2CS , $c-C_3H_2$, and NH_3 . The red dotted square area is expanded in Figure 5.

Frequency (GHz)

Figure 5

Expanded spectrum of the $J_{Ka,Kc} = 8_{1,8} - 7_{1,7}$ transition for 2,5and 2,4-cyclohexadien-1-thione

Double peaks in the red square is by Doppler splitting.

Table 1.

Measured Frequencies of Rotational Transitions for 2,5- and 2,4-cyclohexadien-1-thione in MHz

> 2,5-cyclohexadien-1-2,4-cyclohexadien-1-

> > thione

abbr.

V_{obs}- V_{calc}

Table 2.

Molecular constants of 2,5- and 2,4-cyclohexadien-1-thione in MHz

	2,5-cyclohexadien-1-thione		2,4-cyclohexadien-1-thione	
	Obs. ^a	Calc. ^b	Obs. ^a	Calc. ^b
A ₀		5356.0		5319.2
B	abbr.	1624.3	abbr.	1630.2
C ₀		1255.6		1257.1
Δ_{J}	0.0 ^c	0.000054	0.0 ^c	0.000058
Δ_{K}	0.0 ^c	0.001002	0.0 ^c	0.000928
$\Delta_{J,K}$	0.0 ^c	0.000225	0.0 ^c	0.000245
$\delta_{ m J}$	0.0 ^c	000014	0.0 ^c	0.000015
δ_{K}	0.0 ^c	000252	0.0 ^c	0.000178
RMS ^d	0.017		0.031	

^a Values in parentheses denote the uncertainties (1 σ) and apply to the last digit of the values.

^b CAM-B3LYP/cc-pVTZ using Gaussian 16W

^c Fixed

^d spfit

Examples of frequency estimation in a millimeter region $J_{Ka,Kc} = 17_{0,17} - 16_{0,16}$ 2,5- 43474.442±0.460 MHz 2.4- 43638.774±0.112 MHz

- 2,5- and 2,4-cyclohexadien-1thione do not have split by spinrotation interaction, internal rotation, and hyperfine and have large dipole moments.
- The two molecules make strong rotational lines and are the sulfide easiest aromatic molecules to detect in space as a first finding.

Experimental

Figure 2

and

thione

2,5-

Figure 3

- Discharge: 10 Hz pulsed jet 5 K
- Temperature:
- 1.5 atom • Back pressure:
- Voltage:
- Current: 3-8 mA with a 50-k Ω ballast register

1000 V

thione N_{Ka,Kc}'- N_{Ka,Kc}" Vobs - Vcalo 2,4-Vobs 4 1 4 - 3 1 3 4 0 4 - 3 0 3 4 2 3 - 3 2 2 4 2 2 - 3 2 1 4 1 3 -3 1 2 5 1 5 - 4 1 4 5 0 5 - 4 0 4 5 2 4 - 4 2 3 5 3 3 - 4 3 2 5 3 2 - 4 3 1 5 1 4 - 4 1 3 Molecular structures of 2,5-6 1 6 - 5 1 5 2,4-cyclohexadiene-1-6 0 6 - 5 0 5 6 2 5 - 5 2 4 6 3 3 - 5 3 2 abbr. 7 1 7 - 6 1 6 7 0 7 - 6 0 6 7 2 6 - 6 2 5 Roof 7 3 5 - 6 3 4 mirror 7 3 4 - 6 3 3 7 1 6 - 6 1 5 7 2 5 - 6 2 4 8 1 8 - 7 1 7 8 0 8 - 7 0 7 8 2 7 - 7 2 6 8 3 6 - 7 3 5

References

Araki, M., http://molecules-in.space/

Table 3.

The dipole moments of 2,5- and 2,4-cyclohexadien-1-thione by CAM-B3LYP/cc-pVTZ using Gaussian 16W

	2,5-	2,4-
$\mu_{\rm a}$ (D)	4.73	3.88
$\mu_{\rm b}$ (D)		0.52
Relative Energy (K)	0	1780

Summary

- The 34 and 18 rotational transitions of 2,5- and 2,4cyclohexadien-1-thione in the centimeter wave region have been measured in the laboratory.
- Molecular constraints of both the molecules have been determined.
- Rest frequencies of the molecules have been expected accurately in a millimeter region (< 1 MHz except for the higher *K* transitions).

Future plan

- Sample: thiophenol C_6H_5S in Ne, vapor pressure
- Lines were observed using the combination of the chirp pulsed spectrometer and the pulsed discharge supersonic jet.
- The wave source of this spectrometer consists of a synthesizer (Agilent Technologies, E8257D), an arbitrary waveform generator (Keysight, M8190A), and a solid-state amplifier (Microsemi).
- The output of the synthesizer after mixing with a chirped pulse from the arbitrary waveform generator was amplified by a solidstate amplifier and derived to a horn antenna.
- This horn antenna works as both an output port and a collecting port. Radio wave was received after interaction with gas.
- Cernicharo et al. 2001, ApJ, 546, L123 Cernicharo et al. 2021a, A&A, 649, L15 Cernicharo et al. 2021b, A&A, 655, L1 Cernicharo et al. 2022, A&A, 663, L9 Lee et al. 2021, ApJL, 910, L2 Loru et al. 2023, A&A, 677, A166 McCarthy et al. 2021, Nat Astron, 5, 176 McGuire et al. 2018, Science, 359, 202 McGuire et al. 2021, Science, 371, 1265
- The millimeter region needs to be searched in the laboratory.
- We plan to investigate these molecules in an astronomical database.

List of the observed interstellar molecules

http://molecules-in.space/

