Modeling Population(s) of Galaxy Clusters

August (Gus) Evrard

Depts. of Physics and Astronomy, Leinweber Center for Theoretical Physics University of Michigan, Ann Arbor

Bulbul+ 2024, A&A

First Results from the SRG/eROSITA All-Sky Survey: From Stars to Cosmology Garching, Germany 18 September 2024

Congratulations to Esra and the eRosita cluster team for all their efforts to publish the eRASS1 cluster catalog!

From the archives (literally…)

Image of a transparency from a 1998 talk

ROSAT observations had measured Coma's baryon fraction Briel, Henry + Bohringer 1992

How well would cluster gas trace the cosmic ratio? *Need Upsilon-bar!* the clustered mass density Ω_m from nucleosynthesis and the cluster baryon fraction

simple argument -

White et al '93

- 1) primordial nucleosynthesis constrains baryon density $\Omega_h h^2$
- 2) mean baryon fraction in rich clusters $\bar{f}_b(\delta_c) = \bar{\Upsilon}(\delta_c) \frac{\Omega_b}{\Omega_m}$ mean interior density contrast $\delta_c \equiv \frac{\rho($ is natural scale variable for gravity and

independent of H_0 (easy to apply to obs)

3) measure $\bar{f}_b(\delta\mathbf{Q})$, calibrate $\bar{\Upsilon}(\delta_c)$, then

 $\Omega_m = \bar{\Upsilon}(\delta_c) -$

From the archives…

Image of a transparency from a 1998 talk

Multiple simulators had run the reference "Santa Barbara cluster" Frenk et al 1999

Local baryon fraction not strongly biased wrt the cosmic value Upsilon-bar \sim 1

From the archives…

Insights into component dynamics and thermal structure

 $z=0.9$ 0.6 0.3 $\bf{0}$ Dark Matter z-proj Gas Temperature X -ray Ő

Evrard & Gioia 1998

The Galaxy Cluster – Massive Halo Connection

Galaxy Clusters at the crossroads (2011 KITP image)

LOSHIOLOGY

Cosmology:

 $\Omega_{\sf m}^{\vphantom{\dagger}}$ $\sigma_{\sf 8}^{\vphantom{\dagger}}$ gravity, D(z) GR extensions SIDM f_{nl}

+ complementarity

Astrophysics:

 most massive galaxies (+ descendents of first galaxies) most massive SMBHs plasma processes chemistry galaxy mergers strong lensing of high-z structures + lots more!

Background image credit: Gustavo Yepes (Universidad Autonoma Madrid) and MultiDark collaboration.

Clusters are massive, multicomponent cosmic halos

X-ray flux from hot gas bremsstrahlung best for identifying clusters (least projection)

SZ effect from upscattering of CMB photons extends to high-z easily

"dark matter" **halo**

Allen, Evrard, Mantz 2011, ARAA

Galaxy Cluster/Halo catalogs: Optical/IR X-ray Sunyaev-Zel'dovich (SZ) Theory (all sky, M_{200m})

– Increasing size and depth using both hot gas and galaxies as tracers.

- Growing **spectroscopic coverage**
- z>1 is no longer the frontier Spitzer: SPARCS, GOGREEN, +
- $-$ z> \sim 3 is now the frontier Protoclusters: MAHALO, BOSS, +

Key to cluster science: exploit overlapping, multi-wavelength surveys

Population Model Ingredients: Halo mass function (HMF) & Scaling Relations (MPRs/MORs)

Population modeling I. Halo Mass Function (HMF)

Precise calibrations must be weighed against this:

DM-only universes are not ours!

Galaxy formation drives **baryon loss**, reducing total halo mass.

A "**world estimate**" requires multiple, independent simulations.

Modest alternative: simple, dual-quadratic form (DQ-HMF)

Define mass relative to a pivot value $\mu \equiv \ln(M/M_p)$

Expand log of space density as a quadratic

$$
\ln\left[\frac{dn(\mu,z)}{d\mu}\right] = -\sum_{i=0}^{2} \frac{1}{i!} \beta_i(z) \mu^i
$$

Normalization and slope at the pivot-mass behave quadratically with z $\beta_i(z) = \beta_{i,n} + \beta_{i,z}(z - z_p) + \frac{1}{2}\beta_{i,z} (z - z_p)^2$; $i \in \{0, 1\},$ while curvature is linear. $\beta_2(z) = \beta_{2,n} + \beta_{2,z} (z - z_p).$

Norton, Evrard & Adams 2024, MNRAS

DQ-HMF benefits from simplicity

- **● Eight, directly interpretable parameters**
- Computationally efficient for MCMC chains
- Convolution with log-normal mass-observable relation is **analytic**

Figure 2. DQ-HMF model parameters, $\beta_i(z)$, derived from fitting the Mira-Titan HMF at the redshifts shown as points. Lines show the fits to equations (2) and (3) , with parameter values given in Table 2.1.

Population modeling II. Scaling Relations

Intrinsic **halo** scaling: **Mass-Property Relations (MPRs)**

- Available from "full-physics" simulations of large cosmic volumes (or "zooms")
- Constant power law (PL) forms are rare, but **running PL in {M, z}** ok
- Scatter is **log-normal** to first order, skew-normal for some properties

Observed **cluster** scaling: **Mass-Observable Relations (MORs)**

- Build from light-cone outputs of "full-physics" simulations (or N-body + baryon pasting)
- **Projection often adds skew to Pr(obs | M,z)**, less so for X-ray flux!
- Mis-centering must be modeled for optical (& SZ) clusters
- Not generic: form of $Pr(obs | M,z)$ must be tailored to a survey/selection specifics

Evidence for log-normal MPRs

Illustris-TNG&Cluster + FLAMINGO sims: **normed residuals from KLLR mean**

Eddie Aljamal

DQ-HMF & PL + log-normal MPR → *analytic forms*

Log-normal property kernel

s = ln(property) in appropriate units

 Γ \rightarrow ℓ

 $\sqrt{1}$

$$
P(s|\mu) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{[s-\langle s\rangle(\mu)]^2}{2\sigma^2}\right\},\,
$$

After convolution, find

 $\langle s \rangle(\mu) = \varpi + \alpha \mu$. power law mean

Space density

$$
\ln\left[\frac{dn(s,z)}{ds}\right] = \ln A - \beta_0(z)
$$

$$
-\frac{\beta_2(z)(s-\varpi)^2 + 2\alpha\beta_1(z)(s-\varpi) - \beta_1^2(z)\sigma^2}{2(\alpha^2 + \beta_2(z)\sigma^2)},
$$

Explicit mixing of HMF shape and MPR parameters → **cosmo/astro degeneracies**

Mean mass selected by property

$$
\ln\langle M \mid s,z\rangle = \frac{(s-\varpi)/\alpha - (\beta_1(z)-1/2)\sigma^2/\alpha^2}{1+\beta_2(z)\sigma^2/\alpha^2}.
$$

$$
A = \frac{1}{\sqrt{\alpha^2 + \beta_2(z)\sigma^2}}.
$$

 \blacksquare

Norton, Adams, Evrard 2024, MNRAS

Which *Intrinsic* **Properties are the Best Proxies for Total Halo Mass?**

Mass Proxy Quality of IllustrisTNG & FLAMINGO halos

Focus: Scatter in true halo mass given one or more properties. Explicit mass dependence via KLLR on halo populations at discrete redshift.

 $\sigma_{M_{500c}}^2 |s = \left(\alpha(\mu, z)^T C^{-1}(\mu, z) \alpha(\mu, z) \right)^2$

Steeper scalings (higher alpha) or (and?) **low intrinsic scatter** are best, and strong anti-correlations.

Table 1. Definition of gas properties used in this work.

Hot gas scaling relations**: gas mass & temp. slopes**

Compendium of literature slopes: gas mass (incomplete)

Henden (2019) FABLE -

Eddie Aljamal

Super-linear due to less efficient star formation in high mass halos.

Good consistency but does not reflect

- sample selection/ mass coverage
- systematic errors

Hot gas scaling relations**: gas mass & temp. scatter**

TNG300 + TNG-Cluster FLAM-L1_m8 M_{gas} Scatter
 $\frac{0.3}{0.2}$
 $\frac{0.3}{0.0}$ $z = 2$ $z = 1/1.05$ $z = 0.5$ $z = 0$ $T_{\rm SI}$ Scatter
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 0.0 13.0 13.5 14.0 14.5 15.0 13.0 14.0 15.0 13.5 14.5 $log(M_{500c}$ [M_o]) $log(M_{500c}$ [M_o])

Strong mass dependence in *M* **gas** Only 5% @1e15

More z-evolution in FLAM than TNG at the group scale.

Hot gas scaling relations**: pressure scatter**

Hot gas properties**: Mass Proxy Quality** @z=0

Eddie Aljamal

Gas Mass and **SZ Pressure** are the best proxies of halo mass.

Robust across redshift.

What about **Galaxy properties?**

Eddie Aljamal

Total stellar mass is the best, reaching 10% for the largest clusters.

BCG stellar mass is relatively poor at high mass.

had it all? 3% mass scatter is achieved at the cluster scale by combining all properties.

What if you

What can be achieved in practice?

Summary

Synergies between simulations and observations of galaxy clusters have been expanding and deepening for decades, and will continue to do so in the eRosita era.

Multiwavelength studies are essential.

A verification study of two "full physics" cosmological simulations shows:

- Good agreement in hot gas property statistics,
- Mass and redshift dependence of slope and scatter, esp. at group scale,
- Gas mass and pressure are the best halo mass proxies.

Thank you!

Compendium of literature slopes: Temperature

Sub-self-similar due to more efficient star formation in low mass halos.

Fair consistency but does not reflect

- sample selection
- systematic errors

Compendium of literature slopes: Electron Pressure

Super-self-similar due primarily to Mgas slope >1.

Fair consistency but does not reflect

– sample selection – systematic errors

Property covariance: Mstartot and Mgas

Property covariances: T and Mgas

