AGN X-ray / Multi-wavelength Surveys Review

Franz Bauer (P. Universidad Católica de Chile)

Motivations for (X-ray) surveys of AGN

Central engine structure and physics

- SMBH => accretion (UV/opt) + b-fields => corona, jet (X-rays/radio)
- ⇒ => ionization (BLR, NLR) + winds (BAL) + dust reprocessing (MIR)

BH Demographics + Unification

- → Domesticate the AGN zoo (orientation, M_{BH}, L/L_{Edd}, RL-ness, ...)
- ⇒ Establish distributions of M_{BH} , L/L_{Edd} , RL-ness, θ_{open} , hosts, ...
- Quantify cosmic accretion (and star formation) history

Co-evolution of SMBH and host

- ⇒ Pin down BH (and host) formation scenarios
- Elucidate SMBH+host relations + feedback mechanisms/efficiency

Tools

→ Use as probe of space-time, cosmology, physical constants, large-scale structure, line-of-sight gas, ...

Bauer+23

CXRB and first AGNs in X-rays

➡ First galactic X-ray source, Sco X-1, and diffuse cosmic X-ray background (CXRB) first background discovered (Giacconi+62).

• First samples (1970s-1980s)

- → UHURU (Forman+78), ARIEL-V (Warwick+81), HEAO-1 (Marshall+82, Wood+84), Einstein HRI+IPC (Giacconi+79, Harris+94, Moran+96)
- ➡ Einstein objects accounted for ~40% of XRB.
- substantial difficulties to constrain optical counterparts (hence true energetics)

- ROSAT (0.1-2.4 keV; 1990-1999)
 - ⇒ PSPC 2-deg FOV => all-sky survey during ~1.5 yr; pointed PSPC + HRI obs. thereafter
 - → 1RXS = 18.8k bright (Voges+96), 105k faint (Voges+00)
 - **→** 2RXS = 135k srcs (Boller+16)
 - **→** 60%-90% EEF ~ **100-200" PSF**
 - issues with counterpart IDs + follow-up (e.g.,Laurent-Muehleisen+97, Bade+98, Bauer+00, Zickgraf+03, ...)
 - → XLF => Luminosity dependent density evolution
 - obscured AGN completely missed, ambiguity in spectra constraints

- Chandra + XMM + Swift/XRT era (0.5-8 keV; 1999+)
 - **→** 0.5-5" PSFs => relatively unambiguous counterpart identification
 - **→** 20'-30' FOVs => **<3-5% sky coverage to date**
 - → "arms race" in deep fields => ~90% of XRB accounted for.
 - MOS spectra => higher fraction of objects can be identified

Luo+17

10-15

 $S = 2-7 \text{ keV Flux (erg cm}^{-2} \text{ s}^{-1})$

> 10 keV missions can produce less-biased (by N_H) AGN samples

- Swift BAT (14-195keV, 2004+)
 - ⇒ all-sky survey (157mo = 1800+ srcs)
 - ~100% w/ IDs via XRT + spectra => legacy sample (Koss+22)
 - <1% of XRB resolved near peak (Burlon+11)</p>
- NuSTAR (3-79keV, 2012+)
 - **→** NuSTAR 18" PSF => **decent counterpart identification**
 - **→** 12'x12' FOV => <0.1% sky coverage to date
 - → ~35% of XRB near peak resolved
 - → 76% w/ <10 keV detection in Chandra, XMM-Newton, Swift-XRT</p>

Historical advancement (other wavelengths)

- 3C (59+), GB (86+), FIRST+NVSS (97+,98+), SUMMS (99+) => radio-loud AGN
- Palomar-Green QSO sample (83+) => type 1 AGN
- IRAS (83), Spitzer (03-20), WISE (09-24) => obscured AGN + torus
- HST (1990+) => all types of AGN (COSMOS, GOODS, CANDELS), M_σ
- AAO+SDSS+LAMOST+DESI (97+) => QSOs + type1+2 AGN => Juna, Julien
- Gaia (13+) => QSOs
- JWST (21+) => MIR + hi-z AGN => Julien
- ...

Key results: Background synthesis models

- Can successfully reproduce XRB (e.g., Gilli+07, Ueda+14; Aird+15; Buchner+15; Ananna+19)
- ~50% of accretion is CT, not tracked by X-rays
- Strong assumptions remain for several key factors (N_H > 10²⁴ cm⁻², X-ray spectral shapes)

Key results: AGN Downsizing

- ~complete AGN samples over wide L_x, z, and N_H ranges allow detailed characterization of AGN XLF.
- "AGN downsizing" => higher L_x AGNs peaks at higher z (e.g., Cowie+03; Ueda+14; Aird+15).
- Evolution of obscuration
- Uncertainties for CT and low-L_x, and hi-z regimes
- Including JWST results critical.

Key results: Cosmic Black Holes Accretion Rate/Density (BHAD)

- Fairly good reckoning of where and how strongly non-CT SMBHs grow now.
- MIRI-based BHAD becomes significantly higher than the X-ray-based BHAD by \sim 0.5 dex at z > 3, implying MIRI is detecting new heavily obscured/CT AGN.

Key results: AGN Physics

- Refine relations b/t different AGN components to probe physics and structure:
 - \rightarrow α_{ox} and $\Gamma => disk+corona$
 - X-ray-6um disk/corona+torus
 - mm/X-ray => corona/jet launching region?
 - → radio/X-ray/MBH => jet upper bound?

Key results: AGN Physics

- Assess variability of disk and corona, probe how and why they relate to SMBH properties
- Find and track transient events, which can provide powerful constraints on models.

Key results: AGN + Host James

- Fundamental relation between the SMBH mass and spheroid mass (also total stellar and halo)
- Important to understand how BHAR related to gas supply, host, feedback

Current + Future...

- **eROSITA!!!** => uniform sample ~3 million AGNs, probing AGN evolution, large-scale structure, and variability.
- **JWST** + **Euclid** => pushing hi-z AGN evolution.
- **Einstein Probe + SVOM** => Pushing boundaries on X-ray transient and variability behavior
- LSST + Roman => Pushing boundaries on optical transient and variability behavior
- Athena, AXIS?, HEX-P?, Lynx? ...

Open questions:

- SMBH seeds => How did the first SMBHs form so quickly in the early universe?
- SMBH physics (better models, CSAGN)
- SMBH demographics => What is the full extent of the obscured AGN population?
- SMBH+host => How exactly do AGNs regulate star formation in their host galaxies?
- Continued use of SMBH as probes