

CLUSTER COSMOLOGY: A MULTIWAVELENGTH VIEW

September 2024 | Matteo Costanzi - University of Trieste / INAF

GALAXY CLUSTERS

Illustris TNG simulation

Most massive bound objects in the **Universe:**

• R = 1 - 5 Mpc • M ≃ 10¹⁴ - 10¹⁵ M

Multi-component systems: Galaxies and stars (~5%) ICM (~15%) DM (~80%) X-RAYS OPTICAL LUMINOUS AND EXTENDED X-RAY SOURCES

RICHNESS, LENSING EFFECTS

MICROWAVES

SUNYAEV-ZEL'DOVICH EFFECT

Credit: Allen+11

CLUSTER COSMOLOGY IN A NUTSHELL

The abundance and spatial distribution of galaxy clusters are sensitive to the growth rate of cosmic structures and expansion history of the Universe

 10^{6}

10⁵

10

 10^{3}

102

10

0.5

dN/dz

The abundance and spatial distribution of galaxy clusters are sensitive to the growth rate of cosmic structures and expansion history of the Universe

- Amplitude of matter fluctuations, σ₈
- Total matter density, $\Omega_{\rm m}$
- Dark energy equation of state parameter *w*
- Total neutrino mass, Σm_{v}
- Modified gravity models

...

FROM OBSERVATION TO COSMOLOGICAL CONSTRAINTS

• SZ signal

FROM OBSERVATION TO COSMOLOGICAL CONSTRAINTS

FROM OBSERVATION TO COSMOLOGICAL CONSTRAINTS

MASS CALIBRATION AND COSMOLOGICAL POSTERIORS

SELECTION FUNCTION AND MASS CALIBRATION

Different detection techniques imply different mass proxies, mass calibration data and systematics.

The calibration of the observable-mass relation(s) requires:

- Well defined selection function(s)
- A model to describe the parent distribution as a function of mass (halo mass function)
- A model to describe the PDF of the multivariate observable space: P(X,0|M)

SELECTION FUNCTION AND MASS CALIBRATION

Different detection techniques imply different mass proxies, mass calibration data and systematics.

The calibration of the observable-mass relation(s) requires:

- Well defined selection function(s)
- A model to describe the parent distribution as a function of mass (halo mass function)
- A model to describe the PDF of the multivariate observable space: P(X,0|M)

CORRELATION BETWEEN MULTI- λ OBSERVABLES

Observationally, we only have access to projected quantities.

Line-of-sigh projections increase the scatter and skewness of the Obs-Mass relations and introduce correlations between observables measured at different wavelengths

See also e.g. Farahi et al 2019

Correlation coefficients matrix (upper-right triangle) and scatter plot (bottom-left triangle) of log-residual for different 2D observables

Garching - Sept 2024 | Matteo Costanzi

CORRELATION BETWEEN MULTI- λ OBSERVABLES

• Observationally, we only have access to projected quantities.

 Line-of-sigh projections increase the scatter and skewness of the Obs-Mass relations and introduce correlations between observables measured at different wavelengths

See also e.g. Farahi et al 2019

Correlation coefficients matrix (upper-right triangle) and scatter plot (bottom-left triangle) of log-residual for different 3D observables

CLUSTER CATALOGUES AT DIFFERENT λ s

CLUSTER CATALOGUES AT DIFFERENT λ s

CLUSTER CATALOGUES AT DIFFERENT λ s

Euclid:

Source density vs redshift

Optical:

•

- Lower mass limit $M \sim 5 \cdot 10^{13}$ M_o (x10 sample size)
- Selection function hard to model
- WL and photo-z data readily available

SELECTION EFFECTS IN OPTICAL CATALOGS

$$\lambda^{ob} = \lambda^{true}(M) + \delta\lambda(\lambda^{true}, \dots)$$
$$\sum^{ob} = \sum(M) + \delta\sum(\lambda^{ob}, \dots)$$
$$\downarrow$$

Optical selection bias introduce a correlation between richness and WL signal which needs to be properly modeled to recover unbiased mass estimates

$\delta \lambda$ CALIBRATION: SPEC-Z DATA

Scatter between true and observed richness calibrated via mock/data analysis

Richness contamination from stacked spec-z data

SDSS redMaPPer Clusters

• Spectroscopic data of putative cluster members allow to distinguish between a population of true cluster galaxies and projected interlopers

MASS CALIBRATION WITH SPEC-Z

- Euclid slitless spectroscopic data can be used to improve redshift estimates, and calibrate cluster masses in the redshift range 0.9<z<1.8.
- Low completeness and biased population of tracers prevent the use of traditional methods to derive dynamical masses

Ho et al. in prep

Garching - Sept 2024 | Matteo Costanzi

True Members

$\delta\lambda$ CALIBRATION: SZ DATA

Garching - Sept 2024 | Matteo Costanzi

SELECTION EFFECT BIAS: LESSON FROM DES Y1

- 5.6 σ tension with Planck 18

SELECTION EFFECT BIAS ON WL AND CLUSTERING

Selection effects bias on WL profile from mock redMaPPer catalogs

Selection effects bias on projected 2-pt correlation function from mock redMaPPer catalogs

Also see To et al 2022, Zhang et al 2022, Zeng et al 2023

Garching - Sept 2024 | Matteo Costanzi

DES Y1 CLUSTER COUNTS x SPT MULTI- λ DATA

- Idea: Remove DES WL data and use SPT-SZ multi-wavelengths data (SZ, X-ray, WL) to constrain the richness–mass scaling relation
- Use DES Y1 Number Counts to constrain cosmology
- Add high-z SPT NC to test consistency between abundance and follow-up data sets and assess possible cosmological gain

DES Y1 cluster density and SPT-SZ clusters

DES Y1-SPT SZ cross matched sample

Garching - Sept 2024 | Matteo Costanzi

Costanzi+21

DES CLUSTER COUNTS x SPT MULTI- λ DATA

Costanzi+21

Garching - Sept 2024 | Matteo Costanzi

150

CALIBRATING SELECTION EFFECT BIAS

Self Calibration

Halos from N-body simulation(s) HOD **DM** particles Glx counts-in-cylinde **Density profile** Observed richness λ Lensing profile $\Delta \Sigma(\lambda | \text{HOD})$ χ^2 /d. o. f = 145.66/129 $\lambda \in [20, 30)$ Salcedo et al. $\lambda \in [30, 45)$ $\lambda \in [45, 60)$ $10^6 \times M_{\odot}/physical$ $\lambda \in [60,\infty)$ 2023 **DES Y1 cluster** $\Delta \Sigma(r_p)$ lensing profiles 40 VS $r_p \times$ 20 Emulated $z_c \in [0.20, 0.35)$ lensing profiles 10^{1} 100 r_p [physical – Mpc]

Simulation-based forward modeling

Garching - Sept 2024 | Matteo Costanzi

MULTI- λ SELECTION EFFECT BIAS CALIBRATION

Mock lensing profile of DES clusters matched and unmatched to SPT-SZ

- Cross match optical and SZ cluster samples and calibrate simultaneously the richness, SZ and WL - mass scaling relations, scatters and correlations
- The SZ signal, being less affected by projection effects, can be effectively used to calibrate the WL selection bias, b_{sel}.

CLUSTER MISCENTERING: X-RAY CALIBRATION

Cluster miscentering caused by: masked data, merging/disturbed clusters, "blue" BCG

Miscentering tends to bias low the lensing signal and other cluster observables (e.g. richness)

 \rightarrow See P. Giles talk on Thursday

Richness perturbation as a function of

Garching - Sept 2024 | Matteo Costanzi

BARYONIC FEEDBACK CALIBRATION WITH GC MULTI- λ

- Multi-λ data provide a means to probe the gas (X-ray, SZ) and stellar (optical/IR) components of clusters
- Combining gas and stellar mass measurements with halo mass estimates (e.g. from WL) it is possible to constrain the modulation of the matter clustering due to baryonic feedbacks

Stellar/ICM mass fraction measurements from X-ray and SZ surveys

Matter power spectrum suppression due to baryonic feedbacks

MULTI-PROBE COSMOLOGY WITH GCs

Garching - Sept 2024 | Matteo Costanzi

TAKEAWAY & FUTURE DIRECTIONS

- Galaxy clusters, with their multi-component nature, offer a unique opportunity to study and characterize a cosmological probe across the electromagnetic spectrum.
- There is no such thing as "standalone" X-ray, mm or optical cluster cosmology: Cluster catalogs selected at all wavelengths require multi-wavelength data to derive competitive and unbiased cosmological constraints.
 - Recent cluster analysis results across different wavelengths are consistent among themselves and other probes, reinforcing the robustness of current multi-wavelength approaches.
 - The full potential of optical cluster catalogs is currently limited by the lack of multi-wavelength data, particularly at low richness and high redshift. However, this is set to improve with the increased sensitivity and depth of upcoming X-ray and SZ surveys (e.g. eROSITA 4.5y, SPT-3G, AdvACT).

TAKEAWAY & FUTURE DIRECTIONS

- Clusters have the potential to deliver the most precise single-probe cosmological constraints, provided that systematics in mass estimates can be accurately characterized (~2% level).
 - With the substantial overlap of ongoing and upcoming wide-field cluster surveys across X-ray, mm, and optical wavelengths, future cluster cosmology studies should aim to leverage the potential of a full multi- λ data combination.
- Galaxy clusters should be regarded as a key ingredient of multi-probe analyses: combined with other probes of the LSS, (multi- λ) cluster data is capable of constraining astrophysical parameters and breaking cosmological degeneracies greatly improving the overall constraining power.

Euclid NC+ $M_{WL}^{2.5\%}$ + $M_{\sigma_v}^{z>1}$ DESY1 NC+SPT MOR

0.3

 Ω_m

DESY3 NC+ $M_{WI}^{15\%}$

 σ_{S_8} :

0.4

0.5

0.96

0.88

0.80

0.72

0.2