

Compact Objects in the Milky Way

Max Planck Institute for Extraterrestrial Physics, Germany

Chandreyee Maitra

Brightest compact objects are accreting!

Fortin +23,+24 Also Neumann+23, Avakyan+23

 η_{acc} = accreting efficiency can be as high as 10-40% compare to 0.7% for nuclear burning L_x 10³⁵–10³⁹ erg/s

Neutron stars & Black holes

What are compact objects and why do we care?

Red Giant

Matter under max treme conditions of density, gravity

temperature and magnetic fields !

•Large fraction reside in binary systems, Feedback

Red Supergiant

exotic transients

Object	М	R	
	$M \odot$	cm	ρ~1
White Dwarf	≤ 1.4	10^{9}	g ~1
Neutron Stars	~ 1.4	10^{6}	
Black holes	> 3	$3 \times 10^{-5} \frac{M}{M\odot}$	Whi

'Compact' objects

Planetary Nebula

≈ 5800 km

NASA's Goddard Space Flight Center/Conceptual Image Lab

 0^6 gm/cm^3 10⁸ m/cm²

Supernova

ho ~1014 gm/ cm³ g ~10¹⁴ m/cm²

Black Hole

te dwarf

Neutron star

4

Compact Object Zoo in X-rays

Key questions & breakthroughs

6

White dwarfs, Novae, & Type Ia Supernovae

Wolf+13

Article X-ray detection of a nova in the fireball phase

https://doi.org/10.1038/s41586-022-04635-y

Received: 11 January 2022

Accepted: 14 March 2022

Ole König¹[∞], Jörn Wilms¹[∞], Riccardo Arcodia², Thomas Dauser¹, Konrad Dennerl², Victor Doroshenko³, Frank Haberl², Steven Hämmerich¹, Christian Kirsch¹, Ingo Kreykenbohm¹, Maximilian Lorenz¹, Adam Malyali², Andrea Merloni², Arne Rau², Thomas Rauch³, Gloria Sala^{4,5}, Axel Schwope⁶, Valery Suleimanov³, Philipp Weber¹ & Klaus Werner³

Novae are caused by runaway thermonuclear burning in the hydrogen-rich envelopes of accreting white dwarfs, which leads to a rapid expansion of the envelope and the ejection of most of its mass^{1,2}. Theory has predicted the existence of a 'fireball' phase following directly on from the runaway fusion, which should be observable as a short, bright and soft X-ray flash before the nova becomes visible in the optical³⁻⁵. Here we report observations of a bright and soft X-ray flash associated with the classical Galactic nova YZ Reticuli 11 h before its 9 mag optical brightening. No X-ray source was detected 4 h before and after the event, constraining the duration of the flash to shorter than 8 h. In agreement with theoretical predictions^{4,6-8}, the source's spectral shape is consistent with a black-body of $3.27^{+0.11}_{-0.33} \times 10^5$ K ($28.2^{+0.9}_{-2.8}$ eV), or a white dwarf atmosphere, radiating at the Eddington luminosity, with a photosphere that is only slightly larger than a typical white dwarf.

PHASE

SIGNAL

EVENT

König, Wilms, et al. Nature+22

Discovery of a Nova ignition flash

Chomiuk+20

20-70 novae/yr in Galaxy (Shafter+17)

RS Ophiuchi: A recurrent symbiotic nova

400

300

200

100

The recurrent nova RSOphuichi (RSOph) consists of a massive WD and an RG donor star in a binary orbit with a period of 453.6 ± 0.4 days

high-velocity ejecta from the TNR runs into its dense stellar wind, giving rise to X-ray emission from hot, shocked gas (Orio+22, Islam+23)

Central engine same, variable absorber between 2006 & 2021

Smoking gun of SN 1a single degenerate scenario

Article

A helium-burning white dwarf binary as a supersoft X-ray source

https://doi.org/10.1038/s41586-023-05714-4	
Received: 14 September 2022	
Accepted: 6 January 2023	

Greiner, Maitra, et al. Nature+23

J. Greiner¹, C. Maitra¹, F. Haberl¹, R. Willer¹, J. M. Burgess¹, N. Langer^{2,3}, J. Bodensteiner⁴, D. A. H. Buckley^{5,6,13}, I. M. Monageng^{5,13}, A. Udalski⁷, H. Ritter⁸, K. Werner⁹, P. Maggi¹⁰, R. Jayaraman^{11,12} & R. Vanderspek^{11,12}

[HP99] 159 aka eRASSU J052015.3-654429 is a canonical SSS, burning He instead of H -Pathway for - SN lax

Neutron star composition: equation of state (EOS)

NASA's Goddard Space Flight Center / Conceptual Image Lab

- EOS probes pressure density relation for ultra-dense matter at low temperatures $(n \sim 6n_0)$
- At some high density: transition from nucleons to quark and gluon degrees of freedom (phase transition) & exotic states expected

Solved given equation of state $P(\varepsilon)$ for (M,R)-relation and tidal deformability Λ Image credits A. Watts, Ray et al. 2019

Pulse profile modelling of millisecond X-ray pulsars

NICER team J0740 papers: Wolff et al. 2021, Riley et al. 2021, Raaijmakers et al. 2021, Miller et al. 2021, Dittmann et al 2024

 $M = 2.08 \pm 0.07 M \odot R = 13.7 \pm 2.6_{1.5} R \odot$ NICER team J0030 papers: Bogdanov et al. 2019a,b, 2021 (data and supporting analysis); X-PSI (Riley et al. 2019, Raaijmakers et al. 2019, Bilous et al. 2019);

PSR J0740+6620: pulse profile modelling of XMM-Newton & NICER data

Webb & Barret 2007

Also NS atmosphere modelling of quiescent XRBs in globular clusters ω Cen, M13, and NGC 2808

-> The EOSs that are satisfied by all NS includes the EOSs of normal nucleonic matter and one strange quark matter model (R>8km M unto 2.4M.)

Adaped from A. Watts, 2022

See NS radii constraints from reflection models in LMXB (Ludlam+22) 12

(Mushtukov+2015)

- NS are able to radiate at 100 x Eddington limit (M82 X-2 Bachetti+14) Swift J0243.6+6124 is a link between Super Eddington XRBs and ULXs
- (Kennea+17, Jenke & Wilson-Hodge +17, 18, Doroshenko+18)

-> $B \sim 1.6 \times 10^{13} G$

Kong+22,

Debate of the Magnetic field

Accretion at lower Lx 10³⁴ erg/s -> dipole magnetic fiel of B~ 3 \times 10¹² G

Multipole component?

Jaisawal+19, Wilson-Hodge+18, Doroshenko+20

NOTE! -> Future lies in X-ray polarisation measurements (IXPE, Tsygankov+22; Malacaria+23; Forsblom+23

Understanding the population in the Milky Way

Constitutes large fraction of Galactic Ridge X-ray emission

00.000

29,960

۵

XRB

•

0

0

Catacyclysmic Variables Polars Intermediate polars (Mondal+24) Dwarf novae Quiscent LMXBs (Muno+2005) + quiescent magnetars (Coti Zelati+2018) stars (Schmitt+22)

۲

00

White dwarfs Neutron stars 70-80% GRXE can be resolved into Point sources (RevnivsteV+09, Nature) L_x 10²⁷-10³⁴ erg/s

Heritage Survey of the inner Galactic disk (Mondal, Ponti+24, Ponti et al. in prep)

keV (Jonker+11,14, Wevers+16)

- XMM-Newton survey of Galactic plane 0.5-12 keV (Motch+10, Moran+13), XMM-Newton
- Chandra ChaMPlane survey (Grindlay+05, Rogel+06), Chandra Galactic Bulge Survey 0.5-10

Swift GPS: Connor+23 (380 unique paintings with ~5 ks exposure) -40deg2 s⁻¹ cm⁻²) (erg

050

Xray flux vs i' band mag for sources in the Chandra GBS (jonker+11)

Importance of Galactic Plane & Bulge surveys

state (Ozel+10, Lattimer & Prakash 04) – dynamical mass measurements & eclipsing

quiescent XRBs

synthesis models

• Compact object masses – NS and BH mass gap, NS mass distribution & equation of

1000 posterior samples drawn from original shows μ₁ =1.351 M☉ μ₂ =1.756 M☉

Horvath+22, Lucas M. de Sá+23

Spatial distribution of CO, NS kick distribution, orbits, spectra at diff Lx -> inputs to population

Compact objects in the Milky Way in the eROSITA era

93000 entires in 0.2-2.3 keV eRASS1 (DR1)

Before eROSITA era

Neumann+ 23 Avakyan+ 23 LMXB

http://astro.uni-tuebingen.de/~xrbcat/

SRG/eROSITA

MPE/IKI

MPE

XRBs in the Milky Way in the eROSITA era

- The low flux end populated by BeXRBs while SgXBs show higher fluxes
- MAXI do not detect BeXRBs at fluxes detectable by eROSITA

Zainab et al. in prep

Credit: Avakyan, Zainab

HMXB & LMXB: Avakyan+ in prep

Completeness = 0.7Purity = 0.83XRB Candidates: 185

Isolated neutron stars in the Milky Way in the eROSITA era

Magnificant seven (Haberl+06, Bogdanov+24:) A group of isolated young cooling **neutron stars** – None discovered after ROSAT

Absence of non-X-ray counterparts

(Kurpas+24)

Follow-up X-ray: position, spectrum, oulsations Optical: f_X/f_{opt} Six new isolated neutron stars (1 XDINS: Kurpas+24, A&A, 683, A164)

What next?

See talks on novae in MW by Gloria Sala & symbiotic stars by Sara Saeedi

- Selected 33 candidates
- Soft thermal spectrum

Candidate XDINS: Kurpas+ 24

White dwarfs

Neutron stars

 Understanding the physics of (recurrent) novae (fireball, supersoft phase), nuclear burning & environments, progenitors of SN 1a, binary evolution, common envelope, role of binary companion

 Neutron star mass distribution, mass-gap, EOS, magnetic fie accretion geometry, super-Eddington accretion

Population studies

What comprises the GRXE?, hidden CVs? population synthesis models, stellar evolution, luminosity functions

Summary & key questions

Future

