

Compact Objects in the Milky Way

1

Chandreyee Maitra

Max Planck Institute for Extraterrestrial Physics, Germany

Brightest compact objects are accreting!

Fortin +23,+24 Also Neumann+23, Avakyan+23 ηacc= accreting efficiency can be as high as 10-40% compare to 0.7% for nuclear burning Lx 1035-1039 erg/s

Neutron stars & Black holes

What are compact objects and why do we care?

Red Giant

· Matter under mextreme conditions of density, gravity

4

temperature and magnetic fields!

· Large fraction reside in binary systems, Feedback

Red Supergiant

∼**1014 gm/**

g ∼**108 m/cm2 g** ∼**1014 m/cm2**

Supernova

te dwarf ______ Neutron star

cm3

© 2024 Natsuyuki Nakanishi

'Compact' objects

Planetary Nebula

White Dwarf

exotic transients

Compact Object Zoo in X-rays

Key questions & breakthroughs

White dwarfs, Novae, & Type Ia Supernovae $\overline{\mathcal{C}}$

Wolf+13

Article X-ray detection of a nova in the fireball phase

 D le König^{1⊠}, Jörn Wilms^{1⊠}, Riccardo Arcodia², Thomas Dauser¹, Konrad Dennerl², V ictor Doroshenko 3 , Frank Haberl 2 , Steven Hämmerich 1 , Christian Kirsch 1 , **Ingo Kreykenbohm1 , Maximilian Lorenz1 , Adam Malyali2 , Andrea Merloni2 , Arne Rau2 , Thomas Rauch3 , Gloria Sala4,5, Axel Schwope6 , Valery Suleimanov3 , Philipp Weber1 & Klaus Werner3**

Novae are caused by runaway thermonuclear burning in the hydrogen-rich envelopes of accreting white dwarfs, which leads to a rapid expansion ofthe envelope and the ejection of most of its mass^{1,2}. Theory has predicted the existence of a 'fireball' phase following directly on from the runaway fusion, which should be observable as a short, bright and soft X-ray flash before the nova becomes visible in the optical³⁻⁵. Here we report observations of a bright and soft X-ray flash associated with the classical Galactic nova YZ Reticuli 11 h before its 9 mag optical brightening. No X-ray source was detected 4 h before and after the event, constraining the duration of the flash to shorter than 8 h. In agreement with theoretical predictions $^{4,6-8}$, the source's spectral shape is consistent with a black-body of 3.27 $^{\rm +0.11}$ _{-0.33} × 10⁵ K (28.2 $^{\rm +0.9}$ _{-2.8} eV), or a white dwarf atmosphere, radiating at the Eddington luminosity, with a photosphere that is only slightly larger than a typical white dwarf.

PHASE

SIGNAL

EVENT

König, Wilms, et al. Nature+22 KANA WILMS OT O −1301119, vvittlio, Figure2 shows the combined multi-wavelength light curve of YZ Ret. \blacksquare \blacksquare NATHERLIZ at such high count rates. The non-linear distortion of the spectral infor-

Discovery of a Nova ignition flash

https://doi.org/10.1038/s41586-022-04635-y Received: 11 January 2022

Accepted: 14 March 2022

Timeline of physical processes & EM radiation

in nova

Chomiuk+20

20-70 novae/yr in Galaxy (Shafter+17)

The recurrent nova RSOphuichi (RSOph) consists of a massive WD and an RG donor star in a binary orbit with a period of 453.6 ± 0.4 days

RS Ophiuchi: A recurrent symbiotic nova

 400

300

200

100

high-velocity ejecta from the TNR runs into its Tref. Tref. Page+22 dense stellar wind, giving rise to X-ray emission from hot, shocked gas (Orio+22, Islam+23)

Central engine same, variable absorber between 2006 & 2021

Smoking gun of SN 1a single degenerate scenario

Article

A helium-burning white dwarf binary as a supersoft X-ray source

https://doi.org/10.1038/s41586-023-05714-4 Received: 14 September 2022 Accepted: 6 January 2023

J. Greiner $^{\textrm{1}\boxtimes}$, C. Maitra $^{\textrm{1}}$, F. Haberl $^{\textrm{1}}$, R. Willer $^{\textrm{1}}$, J. M. Burgess $^{\textrm{1}}$, N. Langer 2,3 , J. Bodensteiner $^{\textrm{4}}$, D. A. H. Buckley^{5,6,13}, I. M. Monageng^{5,13}, A. Udalski⁷, H. Ritter⁸, K. Werner⁹, P. Maggi¹⁰, R. Jayaraman^{11,12} & R. Vanderspek^{11,12}

[HP99] 159 aka eRASSU J052015.3-654429 is a canonical SSS, burning He instead of H - Pathway for - SN 1ax

Greiner, Maitra, et al. Nature+23

Neutron star composition: equation of state (EOS)

NASA's Goddard Space Flight Center / Conceptual Image Lab

- EOS probes pressure density relation for ultra-dense matter at low temperatures (n~6n₀)
- At some high density: transition from nucleons to quark and gluon degrees of freedom (phase transition) &

11 exotic states expected Solved given equation of state P(ε) for (M,R)-relation and tidal deformability Λ Image credits A. Watts, Ray et al. 2019

Pulse profile modelling of millisecond X-ray pulsars

PSR J0740+6620: pulse profile modelling of XMM-Newton & NICER data

NICER team J0740 papers: Wolff et al. 2021, Riley et al. 2021, Raaijmakers et al. 2021, Miller et al. 2021, Dittmann et al 2024

 $M = 2.08 \pm 0.07$ Mo R = 13.7 ± 2.6 _{1.5} Ro NICER team J0030 papers: Bogdanov et al. 2019a,b, 2021 (data and supporting analysis); X-PSI (Riley et al. 2019, Raaijmakers et al. 2019, Bilous et al. 2019);

> 12 See NS radii constraints from reflection models in LMXB (Ludlam+22)

Adaped from A. Watts, 2022

Also NS atmosphere modelling of quiescent XRBs in globular clusters ωCen, M13, and NGC 2808 -> The EOSs that are satisfied by all NS includes the EOSs of normal nucleonic matter and one

strange quark matter model (R>8km M unto 2.4M⦿)

Webb & Barret 2007

∕ <u>WP</u>E

 σ_T for $E \ge E_{\text{cycl}}$ $\sigma_{II}(E,B)$ = $\sigma_T[(1-u^2) + u^2(E/E_{\text{cyc}})^2]$ for $E \le E_{\text{cycl}}$ σ_T for $E \ge E_{\text{cycl}}$

Maximum accretion luminosity for a neutron star L39≈0.35B123/4 erg s-1 (Mushtukov+2015)

NS are able to radiate at 100 \times Eddington limit (M82 X-2 Bachetti+14) Swift J0243.6+6124 is a link between Super Eddington XRBs and ULXs

(Kennea+17, Jenke & Wilson-Hodge +17, 18, Doroshenko+18)

Debate of the Magnetic field

-5x10³⁸ **Accretion at lower Lx**
erg/s 1034 erg/s -> dipole magnetic field of B∼ 3 × 1012 G

Multipole component?

Jaisawal+19, Wilson-Hodge+18,

-> B∼ 1.6 × 1013 G

Kong+22,

ਇ

NOTE! -> Future lies in X-ray polarisation measurements (IXPE, Tsygankov+22; Malacaria+23; Forsblom+23)

Understanding the population in the Milky Way

Catacyclysmic Variables Polars Intermediate polars (Mondal+24) Dwarf novae Quiscent LMXBs (Muno+2005) + quiescent magnetars (Coti Zelati+2018) stars (Schmitt+22)

 \bullet

16 White dwarfs

70-80% GRXE can be resolved into Point sources (RevnivsteV+09, Nature) Neutron stars and the U_x 10²⁷-10³⁴ erg/s

XRB

Constitutes large fraction of Galactic Ridge X-ray emission

Q0.000

20,000

٥

σ

۰

 \bullet

್ಲಿಂ

Heritage Survey of the inner Galactic disk (Mondal,Ponti+24,Ponti et al. in prep)

- XMM-Newton survey of Galactic plane 0.5-12 keV (Motch+10, Moran+13), XMM-Newton
	-
- Chandra ChaMPlane survey (Grindlay+05, Rogel+06), Chandra Galactic Bulge Survey 0.5-10

keV (Jonker+11,14, Wevers+16)

30

25

Galactic Plane & Bulge surveys

Swift GPS: Connor+23 (380 unique paintings with ∼5 ks exposure) -40deg2 $\mathsf{s}^{\text{-1}}$ cm $\mathsf{s}^{\text{-2}}$ (erg

10

Xray flux vs i' band mag for sources in the Chandra GBS (jonker+11)

20

m.

Importance of Galactic Plane & Bulge surveys

original shows $μ₁ = 1.351$ Mo $μ₂ = 1.756$ M^o

state (Ozel+10, Lattimer & Prakash 04) - dynamical mass measurements & eclipsing

 3.0

• Spatial distribution of CO, NS kick distribution, orbits, spectra at diff Lx -> inputs to population

Horvath+22, Lucas M. de Sá+23

synthesis models

• Compact object masses - NS and BH mass gap, NS mass distribution & equation of

To de

SRG/eROSITA MPE/IKI

Compact objects in the Milky Way in the eROSITA era

HMXB: Neumann+ 23, LMXB: Avakyan+ 23)

93000 entires in 0.2-2.3 keV eRASS1 (DR1)

http://astro.uni-tuebingen.de/~xrbcat/

Before eROSITA era

<u>WPE</u>

XRBs in the Milky Way in the eROSITA era

XRB Candidates: 185 Completeness = 0.7 Purity = 0.83

HMXB, & LMXB: Avakyan+ in prep)

Zainab et al. in prep

Credit: Avakyan, Zainab

- The low flux end populated by BeXRBs while SgXBs show higher fluxes
- MAXI do not detect BeXRBs at fluxes detectable by eROSITA

Isolated neutron stars in the Milky Way in the eROSITA era

Magnificant seven (Haberl+06, Bogdanov+24:) A group of isolated young cooling **neutron stars - None discovered after ROSAT** What next ?

Candidate XDINS: Kurpas+ 24)

(Kurpas+24)

- Absence of non-X-ray counterparts

Follow-up - X-ray: position, spectrum, pulsations Optical: f_{\times}/f_{opt} Six new isolated neutron stars (1 XDINS: Kurpas+24, A&A, 683, A164)

See talks on novae in MW by Gloria Sala & symbiotic stars by Sara Saeedi

- Selected 33 candidates
- Soft thermal spectrum
	-
	-

Understanding the physics of (recurrent) novae (fireball, supersoft phase) , nuclear burning & environments, progenitors of SN 1a, binary evolution, common envelope , role of binary companion

White dwarfs

> leutron Neutron star mass distribution, mass-gap, EOS, magnetic fields, and accretion geometry, super-Eddington accretion

Summary & key questions

Neutron

Population studies

What comprises the GRXE?, hidden CVs? population synthesis models, stellar evolution, luminosity functions

