The first unbiased survey of star-forming galaxies with eROSITA:

Scaling relations and a population of X-ray luminous starbursts

Elias Kyritsis University of Crete Institute of Astrophysics- FORTH

Andreas Zezas, Frank Haberl, Joern Wilms, Philipp Weber, Steven Hämmerich, Manami Sasaki, Ann Hornschemeier, Antara Basu-Zych, Roman Laktionov, Neven Vulic, Andy Ptak, Andrea Merloni & the eROSITA Normal Galaxies WG

"First Results from the SRG/eROSITA All-Sky Survey: From Stars to Cosmology" September 20th 2024, Garching, Germany

Studying the X-ray output of Normal Galaxies in the local Universe

X-ray emission of normal galaxies is produced by:

X-ray Binaries (XRBs) & hot gas.

- Constrain the evolutionary parameters of XRBs by testing different evolution scenaria through population synthesis.
 - > Orbital parameters, mass ratios
 - Stellar winds, SN kicks, CE ejection
- **Predict** the **formation rate** of GWs and/or sGRBs.
- Study the effect of XRBs on their host galaxy & the surrounding IGM.
- **Study the cosmological evolution of galaxies**.
 - First XRBs may affect the formation of the first galaxies in the Universe
 - Lx SFR- M_{*} Metallicity scaling relations

Current state of the art & limitations

Current state of the art & limitations

HECATEv2 + eRASS1: X-ray all sky survey

[Kovlakas et al. 2021, MNRAS, 506, 2; Kyritsis et al. in prep.]

204733 galaxies at distance up to 200 Mpc (z~0.048)

✓ **Basic properties:** position, Distance, Size

✓ **Multi-wavelength data:** IR to Optical photometry & SDSS spectroscopic information

✓ Stellar population parameters: SFR, M_↓, Metallicity

✓ Activity classification: Star-Forming, ÅGN, Composite, LINER, Passive

[Predehl et al.2021, A&A 647, A1; Merloni et al. 2024, A&A, 687, A34]

Table 6. Summary of performance characteristics of the eROSITA telescope and its survey sensitivity.

		Energy range	
		Soft band	Hard band
		0.2–2.3 keV	2.3–8 keV
FoV averaged effective area [cm ²]		1237 at 1keV	139 at 5 keV
Total background [10 ⁻³ cts s ⁻¹ arcmin ⁻²]		≈3.7	≈2.1
	Point source sens	itivity eRASS:1	
Ecliptic Equatorial region	Total exposure = 200 s	$5 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2}$	$7 \times 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$
Ecliptic Polar region	Total exposure = 4000 s	$7 \times 10^{-15} \text{ erg s}^{-1} \text{ cm}^{-2}$	$9 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2}$
	Point source sensitivity e	RASS:1-8 (predicted)	
Ecliptic Equatorial region	Total exposure = 1600 s	$1.1 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2}$	$2.5 \times 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$
Ecliptic Polar region	Total exposure = 30000 s	$2.5 \times 10^{-15} \text{ erg s}^{-1} \text{ cm}^{-2}$	$4 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2}$

HECATE + eRASS1: X-ray all sky survey

[Kovlakas et al. 2021, MNRAS, 506, 2; Kyritsis et al. in prep.]

[Predehl et al.2021, A&A 647, A1; Merloni et al. 2024, A&A, 687, A34]

204733 galaxies at distance up to 200 Mpc (z~0.048)

✓ Basic properties: position, Distance, Size
 ✓ Multi-wavelength data: IR to Optical photometry & SDSS

spectroscopic information

✓ Stellar population parameters: SFR, M_↓, Metallicity

✓ Activity classification: Star-Forming, ÅGN, Composite, LINER, Passive

		Energy range			
		Soft band	Hard band		
		0.2–2.3 keV	2.3–8 keV		
FoV averaged effective area [cm ²]		1237 at 1keV	139 at 5 keV		
Total background [10 ⁻³ cts s ⁻¹ arcmin ⁻²]		≈3.7	≈2.1		
Point source sensitivity eRASS: 1					
Ecliptic Equatorial region	Total exposure = 200 s	$5 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2}$	$7 \times 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$		
Ecliptic Polar region	Total exposure = 4000 s	$7 \times 10^{-15} \text{ erg s}^{-1} \text{ cm}^{-2}$	$9 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2}$		
Point source sensitivity eRASS:1-8 (predicted)					
Ecliptic Equatorial region	Total exposure = 1600 s	$1.1 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2}$	$2.5 \times 10^{-13} \text{ erg s}^{-1} \text{ cm}^{-2}$		
Ecliptic Polar region	Total exposure = 30000 s	$2.5 \times 10^{-15} \text{ erg s}^{-1} \text{ cm}^{-2}$	$4 \times 10^{-14} \text{ erg s}^{-1} \text{ cm}^{-2}$		

HEC –eR1: Normal Galaxy study Methodology – X–ray photometry

93806 HEC-eR1 galaxies

- **1.** Extracted X-ray spectra
 - Accounting for extended emission;
 P. Weber, S. Hämmerich
- **2.** Measurement of source intensity
 - Posterior probability of the source's intensity
 - BEHR (Bayesian approach)

PanSTARRS

 $eRASS1 0.2-5 \, keV$

3. Calculate **Flux** & **Luminosity** based on the Posterior of the source's intensity and the distance of each galaxy.

HEC-eR1 sample construction <u>Selection of star-forming galaxies</u>

Final Sample after screening

Reliable fluxes : 78

Unreliable fluxes (Upper Limits): 18792

Total: 18870 star-forming galaxies

Activity classification methods

- Spectroscopic (SP) data (SDSS+Skinakas/TNG).
 [Stampoulis et al., A&A, 2019,486]
- Photometric mid-IR/optical data (RF).
 - 5-class activity classifier based on Random Forest machine learning algorithm [C.Daoutis, E. Kyritsis et al., A&A,2023,679:A76]

AGN & Galaxy Cluster screening

- AGN contamination (visual inspection; literature search)
- Hot-gas contamination from Galaxy Clusters
 - eROSITA Galaxy Cluster catalog (F.Harbel, E.Bulbul)
 - Abell Cluster catalog
 - Hickson Compact Group Galaxy
- UVOIR variability:
 - Cross-match with a sample of AGN identified by their UVOIR variability observed with eROSITA (Arcodia et al.2024, A&A, 681, A97)
- Hard X-ray colors

HEC-eR1 final sample of star-forming galaxies SFR-M_-D-Metallicity parameter space

Our sample is well distributed in the galaxy Main Sequence plane and it covers a wide range of sub-solar to super-solar metallicities.

HEC-eR1 Normal Galaxy study Scaling relations of individual galaxies

A population of extremely X-ray luminous galaxies is systematically above the Lx-SFR (M14) & Lx-SFR-M₊ (L16) scaling relations !

➤ Increased scatter !

Increased deviations for low SFRs !

HEC-eR1 Normal Galaxy study Scaling relations of individual galaxies

A population of extremely X-ray luminous galaxies is systematically above the Lx-SFR (M14) & Lx-SFR-M₊ (L16) scaling relations !

➤ Increased scatter !

Increased deviations for low SFRs !

HEC-eR1 Normal Galaxy study Stacking the galaxies per SFR - M₄ - D bin

SFR- M_★- D grid : 10x11x9

- Select all the galaxies per bin following an adaptive binning: 239 bins
- > Reliable: 58 bins & Upper limits: 181 bins
- Calculation of the <Lx> of the galaxy population per SFR-M_{*}-D bin

HEC-eR1 Normal Galaxy study Updated Lx-SFR & Lx-SFR-Metallicity scaling relations

> Updated Lx-SFR & Lx-SFR-Z accounting for the Upper limits & the SFR-dependent intrinsic scatter. $log(L_X/erg s^{-1}) = A \cdot log(SFR/M_{\odot} yr^{-1}) + B + \epsilon(log(SFR))$

$$log(L_X/\text{erg s}^{-1}) = \log(\text{SFR}/\text{M}_{\odot} \text{yr}^{-1}) + \text{A} \cdot (\text{Z}/\text{Z}_{\odot}) + \text{B} + \sigma$$

HEC-eR1 Normal Galaxy study Updated Lx-SFR & Lx-SFR-Metallicity scaling relations

- The excess persists ! Stronger towards lower SFRs & higher sSFRs.
 - Up to $\sim 2 \text{ dex for SFR} < 0.01 \text{ M}_{\Pi}/\text{yr}$.
 - Scatter correlates with SFR

HEC-eR1 Normal Galaxy study Lx excess: Stellar population age or Metallicity ?

- Hel/5876 traces stellar populations of <8 Myrs
- Hα/6563 traces stellar populations of <30 Myrs

Partial correlation test accounting for the upper limit stacks .

- ➤ Lx/SFR excess Metallicity → control for HeI/Ha
 - Low variance
- > Lx/SFR excess HeI/H α > control for Metallicity
 - High variance

Stellar age is more strongly correlated with the Lx excess for stellar populations of age up to ~30 Myrs !

HEC-eR1 Normal Galaxy study Lx excess: Hot-gas contribution or LMXBs ?

Is the excess due to hot-gas contribution?

Hot-gas contribution = $\frac{F_{0.5-2}^{APEC}}{F_{0.5-2}^{total}} \times 100\%$ = ~ 13 %

- Consistent with other works using eRASS4 data [Laktionov et al. 2024 in prep., See poster]
- ★ Cannot explain the excess we measure.

Is the excess at lower SFRs due to the contribution of the LMXBs in the integrated Lx?

 Calculate the expected Lx based on LMXBs XLF from Lehmer+19

★ LMXBs cannot explain the excess in lower SFRs. ¹⁶

HEC-eR1 Normal Galaxy study Lx excess: Stochasticity effect ?

Has the <Lx> excess a physical origin or it is the result of the stochastic sampling of the HMXBs XLF ?

- Simulation of the expected Lx distribution due to stochastic sampling of HMXBs XLFs.
 - Solar-metallicity Mineo+12 (M12)
 - Metallicity-dependent Lehmer+21 (L21)

L21 results in more luminous HMXBs in lower SFRs due to the lower metallicity.

Prob_{stoch} < 0.05%

Stochastic sampling is not adequate to explain the most X-ray luminous individual galaxies.

HEC-eR1 Normal Galaxy study Lx excess: Low - luminosity AGNs or TDEs ?

If all the X-ray emission is due to accretion onto a SMBH how much powerful is it?

 $M_{\bigstar} \rightarrow M_{BH} \rightarrow L_{Edd} \rightarrow f^{Bol}_{Edd}$ is typical of Seyfert 1

Are there **AGN signatures** in their **optical spectra**?

Tidal Disruption Events ? TDE rate for SFGs x eR1-HEC sample of SFGs ~ 0.04 TDE yr⁻¹ or Prob. of observing ~ 1% ¹⁸

HEC-eR1 Normal Galaxy study Lx excess: Finally what ?

★ A subpopulation of galaxies with high sSFRs, lower metallicities & very young stellar populations due to a recent star-formation episode.

HEC-eR1 Normal Galaxy study Conclusions

- **1**. The 1st X-ray unbiased all-sky survey of star-forming galaxies with eROSITA.
- 2. Redefined the Lx-SFR & Lx-SFR-Metallicity scaling relations accounting for intrinsic scatter.
- **3.** Discovery of a population of extremely X-ray luminous star-forming galaxies:
 - a. Their star-forming nature is confirmed by their optical spectra.
 - b. Driver of the Lx excess: high sSFRs, lower metallicities & very young stellar population.
 - c. Stochasticity effects are very important.
- 4. Important implications for binary formation in low metallicity and high-z universe.
- 5. Stay tuned for updates based on eRASS:4.
 - a. Better X-ray statistics, more detections.
 - b. Extension to more distant lower metallicity galaxies.
 - c. Normal Galaxy XLFs.

Paper submitted to A&A, available at arXiv: 2402.12367

Contact: ekyritsis@physics.uoc.gr

