

Weak Gravitational Lensing by Galaxy Clusters

Sebastian Grandis, Senior Scientist, Uni Innsbruck

Vittorio Ghirardini, Florian Kleinebreil, Sebastian Bocquet, Tim Schrabback, I-non Chiu eROSITA-DE: WL work package, Cluster & Cosmology Group DES Collaboration, KiDS Collaboration, HSC Collaboration

Weak lensing by massive halos

Source: Wikipedia

Gravitational potentials bend space time, and therefore *deflect light*, $\vec{\alpha} = -\vec{\nabla}\phi$

Differential deflection, $\alpha_2 < \alpha_1$, leads to a *tangential distortion* of background images

Background source are randomly oriented, hence averaging many such sources reveals the coherent tangential distortion

The strength of the distortion is modulated by the geometrical configuration $\Sigma_{\text{crit,ls}}^{-1} = \frac{4\pi G}{c^2} \frac{D_l}{D_s} \max[0, D_{\text{ls}}]$

<u>Lenses</u>: massive halos with redshift \rightarrow eRASS:1 clusters&groups <u>Sources</u>: galaxies from Dark Energy Survey (DES) with shape and photo-z measurement (also from HSC, KiDS)

universität innsbruck

Institute for Astro- and Particle Physics Extragalactic Astrophysics

Lens sample: eRASS1 clusters

Overlap with all 3 stage III WL surveys DES Y3, KiDS, HSC S19A

2201 clusters in DES Y3, with $z_med \sim 0.3$ (ideal for WL with higher z DES tomo bins)

First eROSITA All Sky Survey (eRASS1)

Selection of clusters & groups as extended X-ray sources (Bulbul+24)

Targeted redmapper in DECaLs DR 10 data for redshifts and confirmation (Kluge+24)

Source sample: DES Y3 shapes

For each lens, select background source by weighting the DES tomographic redshift bins

 $w_b = \begin{cases} \langle \Sigma_{\text{crit,ls}}^{-1} \rangle_b & \text{for } z_1 < z_{\text{med},b} \\ 0. & \text{otherwise} \end{cases}$

Estimate the tangential shear by binning the tangential ellipticities of the sources

Total S/N on 2.2k object = 92

Institute for Astro- and Particle Physics Extragalactic Astrophysics Stats and Sys for WL measurement

Some (unlensed) cluster galaxies leak into the background selection \rightarrow fit for cluster member contamination

universität

innsbruck

Cluster redshift

erosita

Institute for Astro- and Particle Physics Extragalactic Astrophysics Cluster LoS anomalies detected!

Galaxy clusters are over-densities in the galaxy field, cluster members are brighter and redder than field

Reduced shape noise towards cluster center, with richness trend

Cluster members are preferentially elliptical galaxies \rightarrow rounder

Increased response towards cluster center, also with richness trend

– cluster members are brighter and rounder \rightarrow higher response

– field galaxies are magnified, and thus brighter \rightarrow higher response

We exclude cluster centers Rmin>0.5 Mpc/h \rightarrow sub percent effects

universität innsbruck

"Luckily" we understand baryon feedback impact on massive WL profiles "only" to 2 % (Grandis+21)

universität innsbruck

Institute for Astro- and Particle Physics Extragalactic Astrophysics

Calibrating halo mass \rightarrow WL

Synthetic shear profiles

- 2d surface mass densities from hydro sims
 source redshift and shape measurement uncertainties from WL surveys
- cluster member contaminations from WL tasks
- mis-centering from digital twin + hydro sims
- \Rightarrow halo catalogs with realistic shear profiles

Shear profile model for cosmology pipeline – analyse the synthetic shear profiles with same model as used in cosmology pipeline

⇒ output mass (called WL mass) for each simulated halo

⇒ difference and scatter
 to halo mass captured in
 WL bias and scatter

$$\left\langle \log \frac{M_{\rm WL}}{M_0} \right\rangle = b(z) + b_M \log\left(\frac{M}{M_0}\right)$$
$$\log \sigma_{\rm WL}^2 = s(z) + s_M \log\left(\frac{M}{M_0}\right)$$

2d projected density map of a massive halo in the TNG300 simulation, box size 10 Mpc/h

Mis-centering in eROSITA digital twin

Mass calibration

Determining Systematics

(known) Systematic uncertainty = uncertainty on bWL

 draw ~1000 synthetic cluster catalogs with WL shear, measure their WL masses, fit the WL bias and scatter While varying all the input parameters like:

- photo-z and shape measurement uncertainty
- mis-centering distribution params
- cluster member contamination fits
- add 2% extra error due to hydro modelling

Use part of the eROSITA cosmology pipeline (Ghirardini+24) to constrain the X-ray count rate relation to halo mass and redshift

Goodness of Fit

Mass calibration performed on individual cluster WL profiles (simplifies selection effects modelling)

Goodness of fit validation on stacks in X-ray count rate – redshift bins

Total signal to noise after scale cuts: 62

Goodness of fit $\chi^2 = 180.0^{+45.8}_{-30.4}$ for 150 data points

universität innsbruck

Institute for Astro- and Particle Physics Extragalactic Astrophysics

Cross survey comparison

How consistent is the WL signal we measure in the 3 stage III surveys? (Kleinebreil&SG+24)

universität

Institute for Astro- and Particle Physics Extragalactic Astrophysics

erosit

Cross survey comparison

Some eRASS1 clusters fall in the footprints of DES&KiDS or KiDS&HSC → compare WL signals

Future improvements

Sommer+23

universität

innsbruck

understand the impact using X-ray centers (instead of true halo centers) better

erosita

00

6

BSZ

 \rightarrow need to understand correlation between X-ray surface brightness peak and projected halo ellipticity

→ another cross check is to use the centers provided by the optical follow-up for comparison to the results based on X-ray centers (leads to 1 sigma shifts in number counts of South Pole Telescope selected clusters with DES Y3 WL)

0

In Asz

 \rightarrow modify the minimal fitting radius

 Ω_{m}

Helping out cosmic shear

Cluster X-ray and WL observations tightly constrain Baryon feedback in halos → pre eRASS1 pilot study with gas/stellar mass fractions and 8 X-ray surface brightness profiles

Baryon Feedback in halos likely not the source of S8-tension (\rightarrow pin this down with eRASS1 + DES)

Confirmed by the Flamingo Team McCarthy+23 (subm.)

 \rightarrow WL + X-ray observations of cluster and group constrain astrophysical uncertainties on cosmic shear \rightarrow relevance for and complementarity with cosmic shear experiment

