Systematic study of X-ray flaring in the benchmark planet host Proxima Centauri

Enza Magaudda - IAAT/Tübingen

Beate Stelzer Wilhelmina Joseph

Deutsche Forschungsgemeinschaft German Research Foundation

Readapted image from NASA/SDO, NASA/JPL

Our nearest neighbor: Proxima Centauri (α Cen) DFG Deutsche Forschungsgemeinschaft

EBERHARD KARLS

- Main-sequence M5.5 dwarf with Age ~ 5 Gyr
- Gaia-DR3 Dist = 1.3 pc & $P_{\rm rot} = 89.8 \, {\rm d}$ (Wright+18)
- Hosts three planets: Prox Cen B is located within the habitable zone, influenced by the magnetic activity of Prox Cen

SpT = M3.5...later fully convective main-sequence active dwarfs

Saturation Magaudda et al. 2022 Monometry of the formed or not Magaudda et al. 2022 Monometry of the formed or not Magaudda et al. 2022 Monometry of the formed of

X-ray (& EUV) radiation influences the evolution and formation of planet's atmospheres, also determining whether liquid water can be formed or not

Observational diagnostic: Impact of X-ray flares in coronal emission

Solar model: $\alpha \Omega$ – dynamo

convective buoyancy + differential rotation

 \rightarrow re-configuration of the magnetic field

X-ray flares:

 \rightarrow energy is released into accelerating electrons traveling down along the field lines

In absence of flares: <u>Quiescence</u>

 \rightarrow fainter X-ray emission caused by convective currents at the stellar spots

Nakariakov et al. 2016

X-ray variability: XMM-Newton & eROSITA

Search for X-ray flares along the X-ray light curves

XMM-Newton archival data: 8 pointed EPIC/pn observations from 2001 to 2017

eROSITA: detections along the four All-Sky Surveys (eRASSs) 2019-2021

4

UNIVERSITAT TÜBINGEN Search for X-ray flares along the light curve DFG Deutsche Forschungsgemeinschaft

XMM-Newton data:

Time intervals of constant mean count rate

 \rightarrow determination of the quiescent level == minimum mean count rate

Search for change points: where the probability distribution of a time series changes

UNIVERSITAT TÜBINGEN Search for X-ray flares along the light curve DFG Deutsche Forschungsgemeinschaft

duration ~ obs. Time = 8.5 h vs the typical of ~2 h

8 XMM-Newton LCs discretized in *n* time intervals \rightarrow very variable and complex flaring emission

UNIVERSITAT TÜBINGEN Spectrum extraction from each time interval DFG Deutsche Forschungsgemeinschaft

E. Magaudda — IAAT, Universität Tübingen

7

UNIVERSITAT TÜBINGEN **EROSITA: A spectrum from each** *active* **eRODay DFG** ^{Deutsche} Forschungsgemeinschaft

eROSITA LCs divided into equally sized count rate bins based on the Rate distribution

Quiescence == Lowest Count Rate bin

Johnstone & Güdel 2015 (JG15): Lit. collection of X-ray data for FGK + 6 M dwarfs

9

Coronal temperature vs X-ray brightness **DFG** Deutsche Forschungsge

Johnstone & Güdel 2015 (JG15): Lit. collection of X-ray data for FGK + 6 M dwarfs Magaudda+22: M dwarfs from eFEDS

Modirrousta-Galian+20 & Magaudda+20: M dwarfs from XMM-Newton

Coronal temperature vs X-ray brightness DFG Deutsche Forschungsge

Johnstone & Güdel 2015 (JG15): Lit. collection of X-ray data for FGK + 6 M dwarfs Magaudda+22: M dwarfs from eFEDS

Modirrousta-Galian+20 & Magaudda+20: M dwarfs from XMM-Newton

Prox Cen w/ XMM-Newton + Prox Cen w/ eROSITA

DFG Deutsche Forschungsger

Prox Cen vs eFEDS M dwarfs & XMM M dwarfs Magaudda+22 Magaudda+20

eFEDS M dwarfs have high EM

 $\rightarrow R_{\star}$ – dependence or mostly dominated by flare?

XMM M dwarfs:

One is flaring and has high EM
Two are <u>NOT</u> flaring and have low EM

 kT_3 vs EM_3 : low statistic but it seems to be a linear relation with a steeper slope kT_1 vs log EM_1 kT_3 vs log EM_3 XMM M dwarfs eFEDS M dwarfs kT_2 vs log EM_2 3.5 3 10 2.5 [MK] $kT_{\rm n}$ [keV] kT_3 2 \wedge $< T_{\rm corona}$ 1.5 kT_2 1 0.5 kT_1 0 48 49 51 52 47 50 $\log E M_{\rm n} \, [\rm cm^{-3}]$

Long-term quiescent L_x study

Wargelin et al. 2017 : 7-yr activity cycle

Deutsche

Forschungsge

DFG

XMM-Newton: 2001 vs 2009

same flare shape after ~10 yr \rightarrow did the active region persist for so long??

M dwarf sample from eROSITA EDR1

+

Prox Cen from Chandra (Wright+18)

Highlights

BACKUP

The empirical activity-age relation from Magaudda+20 with Prox Cen from XMM-Newton & eROSITA data and GJ 357

Coronal temperature vs X-ray brightness **DFG** Deutsche Forschungsge

Spectral analysis w/ free global abundance: which cases?

EBERHARD KARLS

Coronal temperature and activity states

DFG Deutsche Forschungsge

