The STATiX view of the transient X-ray sky

IAASARS

Angel Ruiz

A. Georgakakis, T. Akylas, I. Georgantopoulos (IAASARS/NOA)

First Results from the SRG/eROSITA All-Sky Survey: From Stars to Cosmology (15-20 September 2024)

© ESA, IRAP, CNES, XMM-Newton & ACO

- The X-ray sky is highly variable at multiple time scales.
- Serendipitous sort transients can be easily missed in the background noise:
 - Shock-wave breakouts (SBO) from supernovae (Soderberg+2008)
 - Merging of compact stellar objects (*Bauer+2017, Xue+2019, Sarin+2021*)
- Previous efforts for systematic searches:
 - EXTRaS (De Luca+2021)
 - EXOD (Pastor-Marazuela+2020), EXODUS
 - Chandra Fast transients (Yang+2019, Quirola-Vásquez+2022)
 - SBO candidates (*Alp & Larsson 2020*)

```
o ...
```


- Our goals:
 - Source detection algorithm considering spatial and time information
 - Robust and **usable** source detection **pipeline**
 - Timing information for all sources

AHEAD 2020 HIGH ENERGY ASTROPHYSICS

Denoising for source detection 2D vs 2D+1D MSVST

Multi-Scale Variance Stabilization Transform (Zhang et al. 2008, Stark et al. 2009)

Time behaviour characterization Bayesian Blocks (*Scargle et al. 2013*)

STATiX

Space and Time Algorithm for Transients in X-rays (Ruiz et al. 2024)

2D projection along the time axis for the initial data and background cubes. Each cube contains 32 time frames. [XMM-Newton Obs.Id. 0305970101]

https://github.com/ruizca/statix

Space and Time Algorithm for Transients in X-rays (*Ruiz et al. 2024*)

https://github.com/ruizca/statix

EVENT LIST

CATALOG

DATA CUBE

Inpainting

BKG CUBE

STATIX

Space and Time Algorithm for Transients in X-rays (Ruiz et al. 2024)

2D projection of the denoised data cube using MSVST. Blue dots mark the source candidates detected with a simple peak detection algorithm.

EVENT LIST BKG CUBE Extraction of light curves Time binning w. **Bayesian Blocks** significant

https://github.com/ruizca/statix

DATA CUBI

Inpainting

Denoising

Peak detection

Identify

time bins

CATALOG

STATiX

Space and Time Algorithm for Transients in X-rays (Ruiz et al. 2024)

2D projection of the data and background cubes. Ellipses show the counts extraction regions for statistically significant source candidates after the light-curve analysis.

https://github.com/ruizca/statix

Space and Time Algorithm for Transients in X-rays (*Ruiz et al. 2024*)

FINAL CATALOGUE

- Positions
- Fluxes
- Light-curves (Bayesian Blocks and unbinned)
- Statistical significance

https://github.com/ruizca/statix

STATiX: Testing via simulations

- 1000 realistic XMM-Newton simulations using SIXTE (Dauser et al. 2019): constant-flux sources + 5 ks transient.
- We found completeness and false detection rates comparable to EMLDETECT.
- Higher detection rate of transients for long exposure time observations.

https://github.com/ruizca/sixtexmm

- Identification of sources with interesting time behaviour:
 - Significantly variable (~500 sources):
 - Three or more BB
 - $CR_{min} + 3\sigma_{min} < CR_{max} 3\sigma_{max}$
 - Sort transients (~50 sources):
 - Three BB
 - ΔT_{min} < 5 ks
 ΔT_{min} << ΔT_{max}
- Search for multiwavelength info:
 - Optical/IR imaging and counterparts.
 - X-ray/optical/IR long-term light-curves (RapidXMM, ZTF, PanSTARRS, CATWISE)
 - Spectra (SDSS, LAMOST)

Light-curves examples

Flaring stars (~70%)

Light-curves examples

Slow decay (tail of stellar flares)

Light-curves examples

Oscillations

Light-curves examples

Known QPEs

GSN 069 (*Miniutti+2013, 2023*) XMM Obs.Id 0851180401

Light-curves examples

Known QPEs

eRO-QPE2 (*Arcodia+2021*) XMM Obs.Id 0872390101

SDSS-DR17 (d = 8.6 arcsec) 1237652899690578216: TARGET = LRG, SPEC_CLASS = GALAXY

Applying STATIX to the XMM archive Preliminary results (1000 observations) *Duration distribution of sort burst*

- **STATIX** is a fully functional, open **3D** algorithm for X-ray source detection, with performance comparable to EMLDETECT for constant sources.
- While very **efficient for the detection of transient sources**, it also very useful for fast detection of sources with interesting time behaviour.
- We are currently processing the whole XMM-Newton archive, finding a rich and complex variety of light-curve patterns in X-ray sources: Sort transients, QPEs, flaring stars, etc.
- Future work:
 - Robust identification of interesting candidates
 - Development of tools for light-curve classification/identification.

MSVST for X-ray source detection

- MultiScale Variance Stabilization Transform (Stark et al. 2009).
- 2D+1D **denoising** algorithm based on wavelets.
- Two key ideas:
 - **2D + 1D:**
 - Disentangle spacial and time/energy dimensions.
 - Apply IUWT to 2D image, and then 1D IUWT to all wavelet coefficients.
 - Variance stabilization:
 - Transform poisson noise to gaussian noise.
 - Allows to apply "simple" thresholding for denoising.

MSVST applied to XMM-Newton simulations More realistic SIXTE simulations

SIXTE SIMULATON [100 ks 199 sources] EPIC-PN: 100 ks, 0.5-10 keV 199 input sources

40 SIXTE simulations for XMM-Newton observations:

- Replicate geometry of EPIC-PN detector.
- Vignetting effects included.
- Random orientation of the detector.
- Exposure times: 10ks, 25ks, 50ks, 100ks.
- Sources randomly distributed in the FoV.
- Source flux distribution following an scaled logN-logS.
- Astrophysical background + particle background.

Data analyzed using SAS-EMLDetect and our 2D+1D MSVST algorithm.

STATIX: Testing via simulations

- 1000 realistic XMM-Newton simulations using SIXTE (Dauser et al. 2019)
- Constant-flux sources + 5 ks transient

https://github.com/ruizca/sixtexmm²

STATiX: Testing with EXTRaS transients

- Seven XMM-Newton observations containing eight EXTRaS transient candidates (*De Luca et al. 2021*) suitable for being analyzed with STATiX:
 - Clean exposures times > 50 ks
 - Transient source not overlapping any high particle background time interval.
- Detection of 5 out of 8 (~60%) EXTRaS transients using a 4σ denoising threshold.
- Up to **7 out of 8 (~90%)** using a **3σ threshold**.
- We also detected a new transient candidate in these observations not identified by EXTRaS.

STATiX: Testing with EXTRaS transients

- Seven XMM-Newton observations containing eight EXTRaS transient candidates (*De Luca et al. 2021*) suitable for being analyzed with STATiX:
 - Clean exposures times > 50 ks
 - Transient source not overlapping any high particle background time interval.
- Detection of 5 out of 8 (~60%) EXTRaS transients using a 4σ denoising threshold.
- Up to **7 out of 8 (~90%)** using a 3σ threshold.
- We also detected a new transient candidate in these observations not identified by EXTRaS.

Applying STATiX to the XMM Archive

• Code upgrades:

- Support for EPIC-MOS data.
- Number of frames in data cubes calculated to optimize performance of MSVST (dependent on exposure time and background level).
- Filtering of high-background time intervals using vargrowth algorithm.
- Selection of XMM-Newton exposures:
 - EPIC scientific exposures in imaging modes.
 - Exposure times greater than 20 ks.
 - Final selection (as of March 2024):
 ~23,500 exposures, corresponding to ~8200 XMM observations