X-UBIK The Universal Bayesian Imaging Kit Applied to X-ray data

M. Westerkamp, V. Eberle, M. Guardiani, P. Frank, T. Enßlin

Sep. 19, 2024 Garching First Results from the SRG/eROSITA All-Sky Survey From Stars to Cosmology

- Non-trivial correlation structures
- Mixture of several components

- Non-trivial correlation structures
- Mixture of several components
- Response representation & application
- Non-Gaussian noise
- Several overlapping datasets

- Non-trivial correlation structures
- Mixture of several components
- Response representation & application
- Non-Gaussian noise
- Several overlapping datasets

Information Field Theory

$$P(s|d) = \frac{P(d|s)P(s)}{P(d)}$$

- Non-trivial correlation structures
- Mixture of several components
- Response representation & application
- Non-Gaussian noise
- Several overlapping datasets

Information Field Theory

$$P(s|d) = \frac{P(d|s)P(s)}{P(d)}$$

Variational inference: $min D_{KL}(Q(s|d)|P(s|d))$

- Non-trivial correlation structures
- Mixture of several components
- Response representation & application
- Non-Gaussian noise
- Several overlapping datasets

Information Field Theory

$$P(s|d) = \frac{P(d|s)P(s)}{P(d)}$$

Variational inference: $min D_{KL}(Q(s|d)|P(s|d))$

$$m = \langle s \rangle_{o}$$

$$\sigma^{2} = \langle (s - m)^{2} \rangle_{Q}$$

$$-\ln P(d_k|\lambda_k) = -\sum_{i=1}^{N} \left[\lambda_k^i - d_k^i \ln \lambda_k^i + \ln \left(d_k^i !\right)\right]$$

$$-\ln P(d_k | \lambda_k) = -\sum_{i=1}^{N} \left[\lambda_k^i - d_k^i \ln \lambda_k^i + \ln \left(d_k^i ! \right) \right]$$

count data d_k

Poissonian log-likelihood:

 $s=s(\xi), P(\xi)=N(\xi,1)$

 $s=s(\xi), P(\xi)=N(\xi,1)$

+

diffuse emission point sources

+

 $s = s(\xi), \quad P(\xi) = N(\xi, 1)$ diffuse emission $s(\xi) =$

point sources

Chandra - SN1006

Reconstructed Sky

(Westerkamp et al. 2024) ¹¹

Reconstructed Point Sources

(Westerkamp et al. 2024) 12

Reconstructed Sky

(Westerkamp et al. 2024) ¹¹

Reconstructed Diffuse Emission

... and more

... and more

Eberle, Guardiani, Westerkamp et. al in prep.

... and more

Eberle, Guardiani, Westerkamp et. al in prep. Chandra:

Eberle et. al in prep.

... and more

Eberle, Guardiani, Westerkamp et. al in prep. Chandra:

Eberle et. al in prep. XMM-Newton:

Credit: ESA/ XMM-Newton

... and more

JWST:

Eberle, Guardiani, Westerkamp et. al in prep. Chandra:

Eberle et. al in prep. XMM-Newton:

Credit: ESA/ XMM-Newton

... and more

Eberle, Guardiani, Westerkamp et. al in prep. Chandra:

Eberle et. al in prep. XMM-Newton:

Credit: ESA/ XMM-Newton

JWST:

Rüstig et. al 2023

Fermi:

... and more

Eberle, Guardiani, Westerkamp et. al in prep. Chandra:

Eberle et. al in prep.

XMM-Newton:

J-UBIK Eberle, Guardiani, Westerkamp et. al 2024 JWST:

Rüstig et. al 2023

Fermi:

Credit: ESA/ XMM-Newton