Automatic Point Source Detection through Model Stress

Matteo Guardiani, Vincent Eberle, Margret Westerkamp, Philipp Frank, and Torsten Enßlin

First Results from the SRG/eROSITA All-Sky Survey: From Stars to Cosmology, September 19th 2024, TUM Campus, Garching, Germany

MAX PLANCK INSTITUTE FOR ASTROPHYSICS

The problem

SRG/eROSITA

X-ray Imaging with IFT

Information field theory **Bayes' Theorem**

$P(s \mid d) = \frac{P(d \mid s) P(s)}{P(d)}$

The prior

$P\left(\xi\right) = \mathcal{N}\left(\mathbf{0},\mathbb{I}\right)$

30

20

10

0 -

-10

-20

FOV [arcmin]

$P(s) = P\left(\xi\right) \quad \frac{\partial\xi}{\partial s}$

10 FOV [arcmin] 0 --10 -20 -30+-30

30

20

FOV [arcmin] 0

30

20

10

-10

-20

$P(s) = \mathcal{N}(\mathbf{0}, \mathbb{I}) \star A(x, y)$

-30 -30

30

20

10

-10

-20

$\frac{P(s)}{\partial s} = \mathcal{N}(0, \mathbb{I}) \quad \frac{\partial \xi}{\partial s}$ FOV [arcmin] 0

30

20

10

-10

-20

Point sources

Point sources

Diffuse emission

Point sources

Diffuse emission

Sky signal

Point sources

Diffuse emission

Sky signal

The Likelihood Instrument response

Sky signal

The Likelihood Instrument response

Sky signal

eROSITA on SRG

The Likelihood Instrument response

Sky signal

Sky data on earth

Credits @ Roscosmos

The Likelihood **Point-spread function**

• R = PSF

 $10 \cdot$

30

20 -

FOV [arcmin] 0 -

-10

-20

The Likelihood Exposure

• R = E

-20

30

20

10

0 -

-10

FOV [arcmin]

eROSITA TM1 exposure

The Likelihood Signal

S

FOV [arcmin]

The Likelihood Signal response

The Likelihood Signal response

$RS = E\left(PSF(S)\right)$

The Likelihood Signal response

FOV [arcmin]

The Likelihood **Poissonian noise**

 $P(d \mid \lambda) = \prod_{i=1}^{N} \frac{\lambda_i^{d_i} e^{-\lambda_i}}{d_i!}$

⁼OV [arcmin]

The Likelihood Poissonian noise

 $P(d \mid \lambda) = \prod_{i=1}^{N} \frac{\lambda_i^{d_i} e^{-\lambda_i}}{d_i!}$ i=1

-OV [arcmin]

The Data

eROSITA TM1 SN1987A data

Inference geometric Variational Inference

Credits @ Frank, P.; Leike, R.; Enßlin, T.A. Geometric Variational Inference. Entropy 2021, 23, 853.

The Data

Simulated eROSITA TM1 data

41

Posterior mean reconstructed sky

- 10⁻¹

 $= 10^{-2}$

10^{-3}

10⁻⁴

 -10^{-1} - 10-2 - 10⁻³ - 10-4

44

Posterior mean sky reconstruction

Point source detection

Point source detection Component separation

Posterior mean sky reconstruction

Point source detection Component separation

Posterior mean diffuse reconstruction

 -10^{-1}

- 10⁻²

Point source detection Component separation

Posterior mean point source reconstruction

 -10^{-1} - 10-2 - 10⁻³

 10^{-4} - 10⁻⁵

Point source detection Detection thresholds from synthetic data

51

Prior driven

- Prior driven
- A point source in every pixel

- Prior driven
- A point source in every pixel
- Hard optimization

54

Automatic point source detection

Let's use a different model...

Point sources

Diffuse emission

Sky signal

Posterior mean diffuse-only reconstruction

-10^{-4}

 -10^{-1}

- 10⁻²

- 10⁻⁵

- 10⁻³

Posterior mean diffuse-only reconstruction

Spatially correlated

10-1

 -10^{-2}

- 10⁻³

 -10^{-4}

- 10⁻⁵

Posterior mean diffuse-only reconstruction

Spatially correlated

 10^{-1}

- 10⁻²

- 10⁻³

 -10^{-4}

- 10⁻⁵

Spectrally dependent from the background

Posterior mean diffuse-only reconstruction

Spatially correlated

 10^{-1}

- 10⁻²

- 10⁻³

- 10-4

- 10⁻⁵

- Spectrally dependent from the background
- Live on a grid

Point source detection Diffuse prior model

$P(s) = \mathcal{N}(\mathbf{0}, \mathbb{I}) \star A(x, y)$

-20 ·

-10

20

10

Signal space prior sample

63

Point source detection Model stress? 30 ·

$P\left(\xi ight) = \mathcal{N}\left(\mathbf{0},\mathbb{I} ight)$

-10

FOV [arcmin]

20

10

0 ·

-20

64

Point source detection Model stress?

$P\left(\boldsymbol{\xi} \mid \mathbf{d}\right) \neq \mathcal{N}\left(\mathbf{0}, \mathbb{I}\right)$

-10

30

20

 10^{-1}

0 -

FOV [arcmin]

-20

-30 + -30

Point source detection Model stress, yessir!

Point source detection Model stress, yessir!

Point source detection Automatic detection

Posterior mean diffuse-only reconstruction

Point source detection Automatic detection

Diffuse-only reconstruction + point source model

Point source detection Relax excitations!

Latent ξ excitations

Point source detection Relax excitations! 30

71

Point source detection Relaxed excitations

-) | -30

20 -

10

-10

20 ·

Relaxed latent ξ excitations

Point source model

Spatially uncorrelated

- Spatially uncorrelated
- Spectrally independent from background

- Spatially uncorrelated
- Spectrally independent from background
- Does not live on a grid

- Spatially uncorrelated
- Spectrally independent from background
- Does not live on a grid

Real data

Point source detection Single-frequency information

Point source detection Multi-frequency information

0.2 - 1.0 keV

2.0 - 4.5 keV

Point source detection Multi-frequency information

0.2 - 1.0 keV

2.0 - 4.5 keV

Point source detection Multi-frequency model

Point source detection Multi-frequency model

Point source detection Multi-frequency model

Point source detection Multi-frequency model latent excitations

Latent space excitations

Point source detection Multi-frequency model latent excitations

Latent space excitations

- 0

Point source detection Generalizable to extended sources!

- 0

Latent space excitations

- - - -----

• • • •

TM1

4

•

91

94

Model stress can rescue component separation!

Model stress can rescue component separation!

- Model stress can rescue component separation!
- Point sources sub-pixel positions can be learned!

ent separation! can be learned!

- Model stress can rescue component separation!
- Point sources sub-pixel positions can be learned!
- Diffuse emission can be clearly separated!

99

- Model stress can rescue component separation!
- Point sources sub-pixel positions can be learned!
- Diffuse emission can be clearly separated!
- Model has many applications! (spectral lines, exoplanets, ...)

100

- Model stress can rescue component separation!
- Point sources sub-pixel positions can be learned!
- Diffuse emission can be clearly separated!
- Model has many applications! (spectral lines, exoplanets, ...)
- Soon public in J-UBIK!

- Model stress can rescue component separation!
- Point sources sub-pixel positions can be learned!
- Diffuse emission can be clearly separated!
- Model has many applications! (spectral lines, exoplanets, ...)
- Soon public in J-UBIK!
- Soon preprint on arxiv!

matteani@mpa-garching.mpg.de

matteani@mpa-garching.mpg.de

Looking for PostDocs!

Thank your

FOR ASTROPHYSICS

