# The morphology of clusters of galaxies in eRASS1

#### Jeremy Sanders

Max Planck Institute for Extraterrestrial Physics

Y. E. Bahar, E. Bulbul, V. Ghirardini, A. Liu, F. Balzer, N. Clerc, J. Comparat, M. Kluge, F. Pacaud, M. Ramos-Ceja, T. Reiprich, X. Zhang

#### **Cluster morphologies**

- In X-rays we are observing the dominant baryonic component of clusters of galaxies
- This hot atmosphere, the intracluster medium, ICM, is still often assumed to be spherical, with a profile following a beta model:

 $n(r) = n_0 [1 + (r/r_c)^2]^{-3\beta/2}$ 

• However, that's a very simplified view of clusters



Chandra observations of clusters selected by the SPT telescope

Redshift order (0.28 to 1.2, median ~0.6)

4.5x3.5 arcmin regions



#### **Cluster morphologies**

- In particular, many clusters have a steeply peaked X-ray and density profiles – cool core clusters (e.g. Fabian 2012)
  - These clusters are also more likely to be relaxed and symmetric
- Merging clusters disturb the 2D shape of the object – see Bullet cluster (e.g. Clowe et al. 2004)
- Minor mergers give rise to sloshing ('cold front'; Markevitch & Vikhlinin 2007)



## Why are they interesting?

- Morphology is connected to global properties of clusters, e.g. cool core clusters have higher luminosities
- Morphology might affect mass determinations, if observable is affected by morphology
- We might want to study astrophysics and evolution of clusters, including mergers and cool cores
- Morphology can affect how cluster is selected in an X-ray survey

#### Our cluster sample

- Over 12,000 optically confirmed clusters have been found in eRASS1 (Bulbul et al. 2024)
- Spans redshifts from 0.003 to 1.32
- Masses from  $5 \times 10^{12}$  to  $2 \times 10^{15}$  M<sub>sun</sub>
- Largest sample of X-ray observed clusters which can be used to study morphlogy



## Morphological parameters

- We can characterise cluster morphology using a number of different measurements (i.e. parameters)
- These are sensitive to different aspects of a cluster morphology and are not equivalent to each other

#### Morphological parameters



## **Morphological parameters**



Concentration (c): fraction of flu in a small vs large aperture (e.g.  $0.1R_{500} \rightarrow R_{500} \text{ or } 80 \rightarrow 800 \text{ kpc})$ 

Centroid shift (w): variance of centroid with different on PSF+noise apertures

dependent

Image based





#### However:

Several of these parameters depend on the choice of the centre of the cluster!

If so, we both fit for the centre with a global model, or use the X-ray peak (denoted \*)

And, for some we measure at fixed physical radii and scaled radii (relative to  $R_{500}$ )

Power ratios ( $P_{10}$ ,  $P_{20}$ ...): decompose clusters into multipoles and calculate power from each relative to 0 order

Ellipticity ( $\varepsilon = b/a$ ): ratio of minor to major axis

modelling (MBProj2D)

Obtained

by

forward

Fit-peak offset (*F*): offset between cluster fit position and X-ray peak



#### New forward-modelled parameters



Introduce new forward-modelled parameters for 2D shape

• Slosh (*H*): looks like a sloshing cluster, where

 $S'(r, \theta) = A(H) S(r [1 + H \cos(\theta + \theta_0)])$ 

 Multipole magnitude (M<sub>m</sub>) – similar to power ratios – where

 $S'(r, \theta) = [1 + M_m \sin(m\theta + \theta_0)] S(r)$ 

for m = 1-4

#### Results: parameters as function of $L_x$



>300 counts and small points have >25 counts

by redshift

systematics related to number of counts

#### Example clusters

Clusters with  $\sim$  1000 counts

Shown are:

Redshift Log central density Log concentration Ellipticity Slosh Multipole magnitudes Peak-fit offset

Catalogue contains 29 measurements for each of the 12,000 clusters in the sample



#### Comparisons with other samples

There is reasonable agreement on individual objects with previous measurements, however samples differ...



- Comparisons with
  - Planck-selected ESZ sample (Lovisari et al 2017)
  - SPT-selected sample (Bleem et al. 2015)
  - eROSITA-selected eFEDS sample (Liu et al. 2022), measured by Ghirardini et al. (2022)
- eRASS1 clusters more concentrated than the other samples, but have similar central density to SPT and Planck clusters

Selection and which subset of cluster population studied  $(z/M/L_x)$  is important.

#### Cluster selection is important



## Modelling the distributions

#### Preliminary!

To properly understand the distributions, we have constructed a Bayesian model including the selection function and mass function of clusters Measure distributions in redshift and X-ray luminosity bins, here for normal, skew and interpolated distributions



Normal distribution is statistically preferred in all these bins.

Not the case for all other parameters...

Evolution coming soon...

#### Identifying relaxed systems



We fit a two-component Gaussian Mixture Model to a set of forward-modelled parameters. Blue= relaxed Red = unrelaxed Model prefers 3/4 of objects in a 'relaxed' component and 1/4 in an <u>'unrelaxed' component</u>

#### Conclusions

- Measured morphological properties of >12000 clusters
- Reasonable agreement with other measurements of the same clusters
- Forward modelled parameters less subject to bias and noise than image-derived parameters
- eRASS1 clusters are more concentrated than those found by SZ surveys
- Majority of systems classified as relaxed
- We are modelling the distribution of parameters and evolution, taking into account the selection functions