The morphology of clusters of galaxies in eRASS1

Jeremy Sanders

Max Planck Institute for Extraterrestrial Physics

Y. E. Bahar, E. Bulbul, V. Ghirardini, A. Liu, F. Balzer, N. Clerc, J. Comparat, M. Kluge, F. Pacaud, M. Ramos-Ceja, T. Reiprich, X. Zhang

Cluster morphologies

- In X-rays we are observing the dominant baryonic component of clusters of galaxies
- This hot atmosphere, the intracluster medium, ICM, is still often assumed to be spherical, with a profile following a beta model:

 $n(r) = n_0 [1 + (r/r_c)^2]^{-3\beta/2}$

• However, that's a very simplified view of clusters

Chandra observations of clusters selected by the SPT telescope

Redshift order (0.28 to 1.2, median \sim 0.6)

4.5x3.5 arcmin regions

Cluster morphologies

- In particular, many clusters have a steeply peaked X-ray and density profiles – cool core clusters (e.g. Fabian 2012)
	- These clusters are also more likely to be relaxed and symmetric
- Merging clusters disturb the 2D shape of the object – see Bullet cluster (e.g. Clowe et al. 2004)
- Minor mergers give rise to sloshing ('cold front'; Markevitch & Vikhlinin 2007)

Why are they interesting?

- Morphology is connected to global properties of clusters, e.g. cool core clusters have higher luminosities
- Morphology might affect mass determinations, if observable is affected by morphology
- We might want to study astrophysics and evolution of clusters, including mergers and cool cores
- Morphology can affect how cluster is selected in an X-ray survey

Our cluster sample

- Over 12,000 optically confirmed clusters have been found in eRASS1 (Bulbul et al. 2024)
- Spans redshifts from 0.003 to 1.32
- Masses from 5×10^{12} to 2×10^{15} M_{sun}
- Largest sample of X-ray observed clusters which can be used to study morphlogy

Morphological parameters

- We can characterise cluster morphology using a number of different measurements (i.e. parameters)
- These are sensitive to different aspects of a cluster morphology and are not equivalent to each other

Morphological parameters

Morphological parameters

 0.0°

Centroid shift (*w*): variance of centroid with different apertures **on PSF+noise**

Image based

Image based

– dependent

 0.01

ity (cm⁻³)
 10^{-3}

However:

Several of these parameters depend on the choice of the ce aupuna unt **C**uscies **choice of the centre of the cluster!**

 P model, or use the X-ray peak (denoted $*$) If so, we both fit for the centre with a global

• Gini computed the integration of the setting projects. to an and coarder radin protein die And, for some we measure at fixed physical radii and scaled radii (relative to R₅₀₀)

Power ratios $(P_{10}, P_{20} ...)$: decompose clusters into multipoles and calculate power from each relative to 0 order

Ellipticity (*ε*=*b*/*a*): ratio of minor to major axis

modelling (MBProj2D)

modelling (MBProj2D)

Obtained by forward

 \overline{Q}

forward

Obtained

Fit-peak offset (*F*): offset between cluster fit position and X-ray peak

New forward-modelled parameters

Introduce new forward-modelled parameters for 2D shape

• Slosh (*H)*: looks like a sloshing cluster, where

S'(r, θ) = A(H) S(r $[1 + H \cos(\theta + \theta_0)]$)

Multipole magnitude (M_m) – similar to power ratios – where

 $S'(r, \theta) = [1 + M_m \sin(m\theta + \theta_0)] S(r)$

for $m = 1-4$

Results: parameters as function of L_X

Example clusters

Clusters with ∼ 1000 counts

Shown are:

Redshift Log central density Log concentration Ellipticity Slosh Multipole magnitudes Peak-fit offset

Catalogue contains 29 measurements for each of the 12,000 clusters in the sample

Comparisons with other samples

There is reasonable agreement on individual objects with previous measurements, however samples differ…

- Comparisons with
	- Planck-selected ESZ sample (Lovisari et al 2017)
	- SPT-selected sample (Bleem et al. 2015)
	- eROSITA-selected eFEDS sample (Liu et al. 2022), measured by Ghirardini et al. (2022)
- eRASS1 clusters more concentrated than the other samples, but have similar central density to SPT and Planck clusters

Selection and which subset of cluster population studied (*z/M/L*_x) is important.

Cluster selection is important

Modelling the distributions

Preliminary!

To properly understand the distributions, we have constructed a Bayesian model including the selection function and mass function of clusters

Measure distributions in redshift and X-ray luminosity bins, here for normal, skew and interpolated distributions

Normal distribution is statistically preferred in all these bins.

Not the case for all other parameters…

Evolution coming soon…

Identifying relaxed systems

We fit a two-component Gaussian Mixture Model to a set of forward-modelled parameters.

Blue= relaxed Red = unrelaxed

Model prefers 3/4 of objects in a 'relaxed' component and 1/4 in an 'unrelaxed' component

Conclusions

- Measured morphological properties of >12000 clusters
- Reasonable agreement with other measurements of the same clusters
- Forward modelled parameters less subject to bias and noise than image-derived parameters
- eRASS1 clusters are more concentrated than those found by SZ surveys
- Majority of systems classified as relaxed
- We are modelling the distribution of parameters and evolution, taking into account the selection functions