

Systematic Collapse of the Accretion Disc Across the Supermassive Black Hole Population

#### **Scott Hagen**

Chris Done, John Silverman, Junyao Li, Teng Liu, Wenke Ren, Johannes Buchner, Andrea Merloni, Tohru Nagao, Mara Salvato

Center for Extragalactic Astronomy, Department of Physics, Durham University, UK scott.hagen@durham.ac.uk

Japan Society for the Promotion of Science (JSPS)

First Results from the SRG/eROSITA All-Sky Survey Garching, 16.09.2024



Generic AGN picture, 'unified model': Antonucci 1993



# Building an AGN SED

Observations show un up-turn in the soft X-rays, leading back towards the UV Laor et al (1997), Gierlinski & Done (2004), Porquet et al (2004) EF(E) EUV UV Optical X-ray kTe Ē

# Building an AGN SED

Observations show un up-turn in the soft X-rays, leading back towards the UV/EUV

Laor et al (1997); Gierlinski & Done (2004); Porquet et al (2004)



If the disc fails to thermalise, forming instead a disc-like structure, then emission should come out as Comptonised black-body rather than black-body

Naturally leads to a spectral shape that links the soft X-ray excess to the UV turn-over Mehdipour et al. (2011, 2015); Done et al. (2012); Petrucci et al. (2018); Kubota & Done (2018)

- Mass and Mass Accretion rate sets bolometric luminosity
- $r_h, r_w$  set the power in each component



L<sub>Edd</sub>

#### AGN SEDs



# Observing AGN



# Observing AGN



# Identifying AGN through Broad Lines



- EUV emission from disc illuminates 'cloud' BLR structure
- Induces emission lines
- Orbital motion broadens the lines
   >~ 1000km/s



Figure taken from: Rakshit et al. 2020

Rest Wavelength (Å)

Typical SDSS Quasar Spectrum Characterised by:

- Broad emission lines
- Power-law 'like' continuum







#### Change in accretion structure motivated by Changing-State



Drop in Optical flux corresponds to dramatic change in the SED, and corresponding loss of broad emission line in Hbeta

#### Change in accretion structure motivated by Changing-State



Can be explained with a dramatic change in the accretion structure, caused by a change in mass-accretion rate

#### Change in accretion structure motivated by Changing-State



Can be explained with a dramatic change in the accretion structure, caused by a change in mass-accretion rate

Is this simply weird behaviour for a handful of rare objects, or is it present in the wider AGN population?

# Sample Selection

- X-Ray Selection Allows us to pick out AGN regardless of the presence of broad emission lines
- eROSITA all sky survey perfect for this!
- eFEDS field (100sq deg) contains 22 079 AGN sources
  - Liu et al. (2022)

Image credit: Max Planck Institute for Extraterrestrial Physics



### Sample Selection - Optical Counterpart

- eFEDS has HSC Optical follow up
  - Sub-arcsecond imagining 8m class telescope
- HSC allows for confident AGN-Host decomposition
  - Li et al. (2021a, 2023); Ding et al. (2021, 2023)



Figure taken from: Li et al. (2023)



## Sample Selection

- Li et al. (2023) performed optical decomposition of ~3800 HSC-eROSITA AGN in the eFEDS field
  - Redshift: 0.2-0.8
- This forms the basis of our study!
- We select X-ray unobscured objects, to ensure we are viewing the central accretion flow
- The sample is then subdivided into **BH Mass** (or Mstellar as a proxy) and **3500** Å **Luminosity** bins



Figure taken from: Li et al. (2023)



























At high Eddington fractions the flow is dominated by a disc-like structure

scott.hagen@durham.ac.uk



At high Eddington fractions the flow is dominated by a disc-like structure

This gets weaker as the Eddington fraction reduces



At high Eddington fractions the flow is dominated by a disc-like structure

This gets weaker as the Eddington fraction reduces

Around the changing-look transition we have comparable power emitted by the disc and corona

scott.hagen@durham.ac.uk



At high Eddington fractions the flow is dominated by a disc-like structure

This gets weaker as the Eddington fraction reduces

Around the changing-look transition we have comparable power emitted by the disc and corona

Past the changing-look/state transition, the inner disc-like structure completely collapses. Leaving a flow dominated by an inner X-ray hot plasma (and the remains of an outer disc)

# Summary / Conclusions

- There is a change in accretion structure, as the flow transitions from a disc dominated state, to an X-ray dominated one
- At low Eddington ratios the accretion disc 'collapses', giving way to an X-ray hot plasma
- This impacts how we identify AGN and understand BH growth through cosmic time
- Hagen, Done, Silverman et al. (submitted)
  - arXiv: 2406.06674



See Also: Hagen & Done (202

Hagen & Done (2023a) - AGN variability
Hagen & Done (2023b) - AGN SEDs and GR
Mitchell..SH..et al. (2023) - AGN SEDs in large samples
Hagen, Done & Edelson (2024) Detailed AGN variability

# Backup Slides





# Identifying AGN through Broad Lines





Figure taken from: Rakshit et al. 2020

- Broad-lines induced by EUV emission in the SED
- Predict the loss of the broad-line emission as the disc collapses





Kang..SH.. et al. (In Prej

There is NO disc at low mass accretion rates!!



Kang..SH.. et al. (In Prep