

Revisiting Dust Scattering Halos from X-ray Surveys with eROSITA

Christian Kirsch¹ Peter Predehl² Jörn Wilms¹ Steven Hämmerich¹ Philipp Weber¹ Aafia Zainab¹ Jeremy Sanders²

¹Dr. Karl-Remeis Sternwarte & ECAP, Friedrich-Alexander-Universität Erlangen-Nürnberg

²Max-Planck-Institut für extraterrestrische Physik

Sept 16, 2024

Dust along line of sight can both **absorb** and **scatter** X-ray photons.

Scattering has two effects:

- Photons scattered out of direct path
- Photons scattered into extraction region

Second effect causes formation of diffuse halo around the source.

Lamer et al., 2021

Scattering Halos – formation

Dust along line of sight can both **absorb** and **scatter** X-ray photons.

Scattering has two effects:

- Photons scattered out of extraction region
- Photons scattered into extraction region

Second effect causes formation of diffuse halo around the source.

Costantini and Corrales, 2023

Scattering Halos – previous studies

Scattering halos are present around most galactic X-ray sources

Study of halos allows

- Separate analysis of line-of-sight dust (absorption includes dust and gas)
- Test of different dust population models
- Estimation of distance to sources (with known dust locations from e.g. spiral arms)

Scattering halos were previously studied in dedicated obserations, but also in surveys, e.g.

- ROSAT (Predehl & Schmitt, 1995)
- Archival *Chandra* and *XMM Newton* observations (Valencic & Smith, 2015)

Halos in *eROSITA*

As a survey telescope, *eROSITA* observes many scattering halos.

Lamer et al., 2021 reported a dust scattering echo around a black hole transient in eRASS 1:

Halos in *eROSITA*

We selected 35 sources that are sufficiently bright for halo extraction. Mostly known XRBs in the galactic plane.

Radial surface brightness distribution shows pile-up, especially for very bright sources.

Use SIXTE (Dauser et al., 2019) simulations to determine which surface brightnesses are safe from pile-up (< 1%).

Here: Count rates below $\sim 10^{-4} \, cts/sec/arcsec^{-2}$

Extract spectra from predefined annuli for fitting

In a given annulus, extracted photons come from two components:

Direct point source and scattered into annulus

Use the xscat model (Smith, Valencic, & Corrales, 2016) to fit both components: For given radius *R*, xscat calculates **fraction of source flux within a circular region**

So for a given source model:

- xscat(*R* = 0) * source_model = Direct point source
- $(xscat(R = R_{out}) xscat(R = R_{in})) * source_model = scattered into annulus$

Then, per annulus, fit measured counts as **combination of both components**, and fit all annuli **simultaneously**

Note: Need to extract separate ARFs for each component: scattered flux is an extended source, direct flux is a point source

Example Spectrum

Example Spectrum

Example Spectrum

Model:

Using all sources, can plot the ratio of $N_{\rm H}$ in absorption compared with $N_{\rm H}$ in scattering

10

Results: Local absorption

Several sources have an excess of $N_{\rm H}$ in scattering.

Most of these sources are known to have local absorption, due to stellar wind or viewing angle through accretion disc.

 \implies separate local $N_{\rm H}$ from interstellar $N_{\rm H}!$

Use this dataset to re-determine the A_V to N_H ratio from Predehl and Schmitt, 1995

Below $A_V = 4$ mag, values are extracted from Gaia using StarHorse (Queiroz et al., 2023).

Above, values are taken from the literature where available.

Fitted relation: $N_{\rm H,sca}/A_V = 0.182^{+0.035}_{-0.029} \ 10^{22} \,{\rm cm}^{-2} \,{\rm mag}^{-1}$

Very similar to value of 0.179 ± 0.003 from Predehl and Schmitt, 1995

Fitted relation: $N_{\rm H,sca}/A_V = 0.182^{+0.035}_{-0.029} \ 10^{22} \,\rm cm^{-2} \,mag^{-1}$

Very similar to value of 0.179 ± 0.003 from Predehl and Schmitt, 1995

However, *N*_H corresponds only to interstellar absorption!

Local absorption must be removed, either extracted from the scattering halo or by estimation with, e.g., variability.

 \Rightarrow with estimate of distance to source, can estimate distance to dust screen

Compare to 3D optical extinction maps (Vergely, Lallement, & Cox, 2022)

Note: Distance to X-ray sources is often quite uncertain!

GX 339-4, d=10.00 kpc, x=0.12, $N_{H,abs}$ =0.58, $N_{H,sca}$ =0.63

Adding all sources together, we find a concentration of dust at 2 to 3 kpc towards galactic center

 \Rightarrow Scutum-Centaurus Arm?

Summary

- Analyze dust scattering halos in *eROSITA* by simultaneously fitting unscattered and scattered photons
- Fitting approach allows separation between local and interstellar N_H
- N_H in scattering correlates to optical extinction
- Fitted dust locations correspond to nearby spiral arms

Further Steps

- Fit spectra to farther annuli Currently restricted by *eROSITA* PSF only being known out to 240"
- Compare different dust models

Currently using Zubko, Dwek, and Arendt, 2004 with bare grains and graphite, solar abundances

Thank you for your attention!

xscat includes multiple dust models

- Mathis, Rumpl, and Nordsieck, 1977
- Zubko, Dwek, and Arendt, 2004 families
- Weingartner and Draine, 2001 families

This varies grain size distribution (right) and grain composition

Smith, Valencic, and Corrales, 2016

Backup – Dust models

Different models yield different *N*_{H,sca}

However, *N*_{H,abs} and other source parameters don't change significantly

Results in this presentation use ZDABGS, which was also favored by Xiang, Lee, Nowak, and Wilms, 2011

References I

Costantini, E., & Corrales, L. (2023). Interstellar absorption and dust scattering. https://doi.org/10.1007/978-981-16-4544-0_93-1

- Dauser, T., Falkner, S., Lorenz, M., Kirsch, C., Peille, P., Cucchetti, E., Schmid, C., Brand, T., Oertel, M., Smith, R., & Wilms, J. (2019). SIXTE: A generic X-ray instrument simulation toolkit. Astronomy and Astrophysics, 630, A66. https://doi.org/10.1051/0004-6361/201935978 ADS Bibcode: 2019A&A...630A..66D
- Lamer, G., Schwope, A. D., Predehl, P., Traulsen, I., Wilms, J., & Freyberg, M. (2021). A giant X-ray dust scattering ring discovered with SRG/eROSITA around the black hole transient MAXI J1348-630. *Astronomy and Astrophysics*, *647*, A7. https://doi.org/10.1051/0004-6361/202039757 ADS Bibcode: 2021A&A...647A...7L
- Mathis, J. S., Rumpl, W., & Nordsieck, K. H. (1977). The size distribution of interstellar grains.. *The Astrophysical Journal*, *217*, 425–433. https://doi.org/10.1086/155591 ADS Bibcode: 1977ApJ...217..425M
- Predehl, P., & Schmitt, J. H. M. M. (1995). X-raying the interstellar medium: ROSAT observations of dust scattering halos.. *Astronomy and Astrophysics*, *293*, 889–905 ADS Bibcode: 1995A&A...293..889P.

References II

Queiroz, A. B. A., Anders, F., Chiappini, C., Khalatyan, A., Santiago, B. X., Nepal, S., Steinmetz, M., Gallart, C., Valentini, M., Dal Ponte, M., Barbuy, B., Pérez-Villegas, A., Masseron, T., Fernández-Trincado, J. G., Khoperskov, S., Minchev, I., Fernández-Alvar, E., Lane, R. R., & Nitschelm, C. (2023). StarHorse results for spectroscopic surveys and Gaia DR3: Chrono-chemical populations in the solar vicinity, the genuine thick disk, and young alpha-rich stars. *Astronomy and Astrophysics*, *673*, A155. https://doi.org/10.1051/0004-6361/202245399
Smith, P. K., Valancia, L. A., & Carralas, L. (2016). The Impact of Accurate Extinction Massurements for

Smith, R. K., Valencic, L. A., & Corrales, L. (2016). The Impact of Accurate Extinction Measurements for X-Ray Spectral Models. *The Astrophysical Journal*, *818*, 143. https://doi.org/10.3847/0004-637X/818/2/143

ADS Bibcode: 2016ApJ...818..143S

Valencic, L. A., & Smith, R. K. (2015). Interstellar Dust Properties from a Survey of X-Ray Halos. *The Astrophysical Journal*, *809*, 66. https://doi.org/10.1088/0004-637X/809/1/66 ADS Bibcode: 2015ApJ...809...66V

Vergely, J. L., Lallement, R., & Cox, N. L. J. (2022). Three-dimensional extinction maps: Inverting inter-calibrated extinction catalogues. *Astronomy and Astrophysics*, 664, A174. https://doi.org/10.1051/0004-6361/202243319 ADS Bibcode: 2022A&A...664A.174V

Weingartner, J. C., & Draine, B. T. (2001). Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. *The Astrophysical Journal*, *548*, 296–309. https://doi.org/10.1086/318651
ADS Bibcode: 2001ApJ...548..296W
Xiang, J., Lee, J. C., Nowak, M. A., & Wilms, J. (2011). Using the X-ray Dust Scattering Halo of Cygnus X-1 to determine distance and dust distributions. *The Astrophysical Journal*, *738*(1)arXiv 1106.3378, 78. https://doi.org/10.1088/0004-637X/738/1/78
Zubko, V., Dwek, E., & Arendt, R. G. (2004). Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints. *The Astrophysical Journal Supplement Series*, *152*, 211–249. https://doi.org/10.1086/382351
ADS Bibcode: 2004ApJS..152..211Z