Study of the Interstellar Medium and Cosmic Rays in local H | Clouds

Tsunefumi Mizuno*on behalf of the Fermi-LAT Collaboration

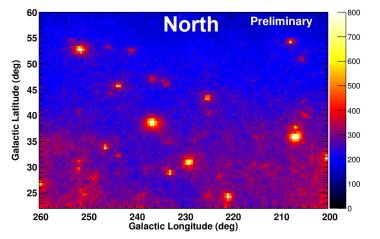
Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

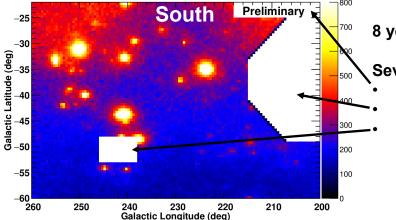
E-mail: mizuno@astro.hiroshima-u.ac.jp

Aims. We aim to study the interstellar medium (ISM) and cosmic-rays (CRs) in a mid-latitude region in the third Galactic quadrant (Galactic longitude l from 200° to 260° and latitude |b| from 22° to 60°). The region is expected to be dominated by local H I clouds since it is located at high latitude and free of know large molecular clouds.

Methods. We evaluated the total gas column density $N(H_{tot})$ by investigating the correlations among 21 cm survey data (HI4PI), *Planck* dust thermal emission models (optical depth at 353 GHz τ_{353} and radiance R), and *Fermi*-LAT γ -ray data in the region studied. In the South region, we first masked areas containing an intermediate velocity cloud or the Orion-Eridanus superbubble, and that with a ratio of the integrated H I 21-cm line intensity to dust emission significantly different from that seen in the rest of the region. We then fit the γ -ray data with a linear combination of gas template maps based on *Planck* dust models and other components to obtain the total gas column density $N(H_{tot,\gamma})$.

Results & Prospects. We found that $N(H_{tot,\gamma})/\tau_{353}$ and $N(H_{tot,\gamma})/R$ depend on dust temperature T_d in the North region, indicating that that neither τ_{353} nor R were proportional to $N(H_{tot})$. We also found that $N(H_{tot,\gamma})$ is not proportional to τ_{353} but shows non-linear relation in the South region. We will examine the systematic uncertainties and discuss ISM and CR properties inferred from γ -ray data.

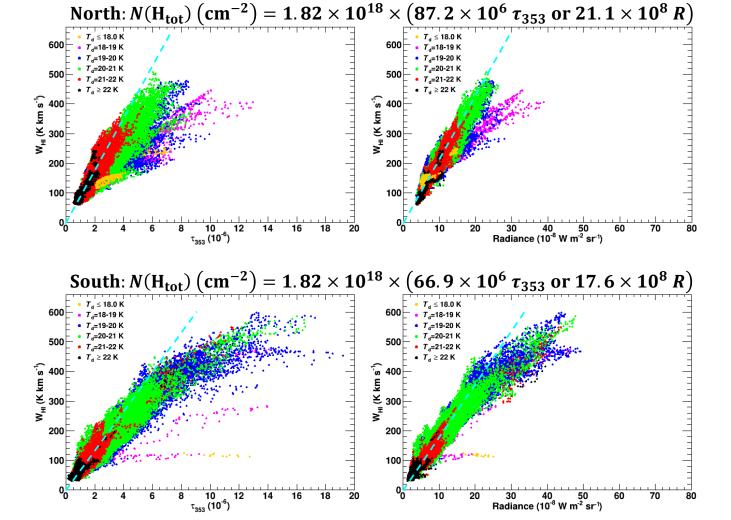

7th Fermi Symposium 2017 15-20 October 2017 Garmisch-Partenkirchen, Germany


*Speaker.

Objective of the Study

- An accurate estimate of N(H_{tot}) is crucial to understand the ISM and CRs
- Considerable amount of ISM gas is not properly traced by HI and CO line surveys [1].
 The distribution of this "dark gas" can be estimated by dust data, but the procedure has not been established yet.
- We studied mid-latitude region of the 3^{rd} quadrant using Fermi-LAT γ -ray data (as a robust tracer of $N(H_{tot})$), HI4PI data [2], and Planck dust models [3], in order to examine the following ISM properties and implications on CRs
 - (a) $T_{\rm d}$ dependence of dust-emission to gas ratio [4]
 - (b) Non-linearity of dust-emission to gas ratio [5][6]

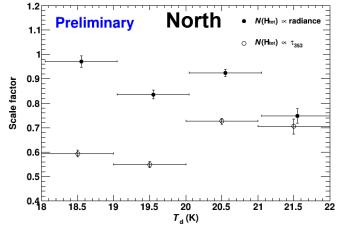
8 years, P8R2_CLEAN_V6, 0.1-25.6 GeV

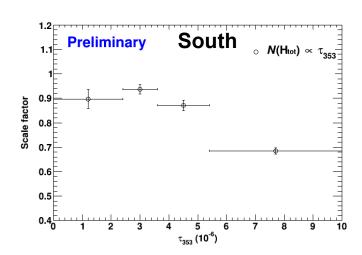

Several areas are masked

- a peculiar W_{HI}-dust relation
 - the Orion-Eridanus superbubble an intermediate velocity cloud

W_{HI}-Dust Relations

- North: T_d dependence is seen and is larger in the $W_{\rm HI}$ - τ_{353} relation
- South: T_d dependence is weak, but a non-linear relation is observed
- We used linear relations which follow trends in high $T_{\rm d}$ & low $W_{\rm HI}$ area to construct initial $N({\rm H_{tot}})$ template maps from τ_{353} and R


Results and Prospects


- We fit γ-ray data with a linear combination of gas template maps and other components (isotropic, inverse Compton, sources etc.)
- Under the assumption of a uniform CR density, emissivity should not depend on $T_{\rm d}$ (North) and should be constant over τ_{353} (South), if $N({\rm H_{tot}}) \propto \tau_{353}$ or R
- North: We prepared $T_{\rm d}$ -sorted maps and found a positive $T_{\rm d}$ dependence for τ_{353} , likely due to an overestimate of $N(H_{\rm tot})/\tau_{353}$ in low $T_{\rm d}$ area (similar trend seen in [4])
- South: We prepared τ_{353} -sorted maps and found negative τ_{353} dependence, likely due to an overestimate of $N(H_{tot})/\tau_{353}$ in high τ_{353} area (similar trend seen in [5][6])
- Future plan: examine the systematic uncertainties and discuss ISM and CR properties

References:

- [1] Grenier+05, Science 307, 1292 [2] HI4PI Collaboration 2016, A&A 594, 116
- [3] Planck Collaboration XI 2014, A&A 571, 11 [4] Mizuno+16, ApJ 833, 278 [5] Roy+13, ApJ 763, 55
- [6] Planck Collaboration XXVIII 2015, A&A 582, 31 [7] Abdo+09, ApJ 703, 1249

Scale factors to the model for the local interstellar spectrum [7]

