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The spectral energy distributions (SEDs) of blazars are dominated by synchrotron and 
inverse Compton radiation. The origin of blazar variability can be investigated from the 
time variation of the SEDs. In the present study, we used Markov chain Monte Carlo 
(MCMC) method to estimate the optimal model parameters of SEDs and their 
uncertainties. Our experiments using artificial data demonstrate that at least one prior 
probability is required to uniquely determine the solution. We used simultaneous 
observations of Mrk 421 with Fermi-LAT, Swift-XRT, and the 1.5-m optical telescope, 
Kanata from 2009 to 2011 reported in Itoh et al. (2015). We succeeded in estimating the 
optimal parameters and their uncertainties by using the prior probability of the variation 
time-scale and Doppler factor. We found that the power-law index of the electron energy 
distribution shows a clear positive correlation with the X-ray flux even if the uncertainties 
are considered. 
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1. Introduction 
Blazars are a type of active galactic nuclei (AGN) whose jets are directed toward us. They 

are observed in a wide range of wavelengths from radio to gamma-rays. Therefore, Multi-wave-
length studies have been actively performed (e.g. Abdo et al. 2011). We can estimate the physical 
quantity in the jets, such as the magnetic field and electron energy distribution by modeling the 
observed spectral energy distributions (SEDs). The number of parameters of SED models is usu-
ally ≲ 10. It is difficult to estimate the optimal parameters and their uncertainties because some 
parameters are strongly correlated and degenerate. Several parameters are usually fixed to esti-
mate the other parameters (e.g. M.Böttcher et al. 2013, Itoh et al. 2015). However, in this case, 
we cannot estimate the uncertainties of the parameters because they depend on the fixed parame-
ters, and their errors are not considered. In addition, the standard method, like the maximum like-
lihood method, may be trapped by local solutions. Hence, we need a method to find a global 
solution of the model parameters and their uncertainties with minimum assumptions. In this study, 
we use the Markov chain Monte Carlo (MCMC) method to estimate the posterior probability of 
the parameters. It enables us to obtain the optimal parameters and their uncertainties from the 
probability distributions. 

2. Model and Method 

2.1 The Synchrotron Self ‒Compton (SSC) model 

In this article, we use the synchrotron self-Compton model for the observed SEDs. This 
model assumes the situation that high energy electrons emitting synchrotron photons upscatter 
the photons by the inverse Compton scattering. We used the equations of synchrotron radia-
tion,	𝑓$

%&', and inverse Compton scattering, 𝑓$(
))*, given by Finke et al. (2008), expressed as: 
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In those equations, the parameters which can be estimated from the SED data are the magnetic 
field, 𝐵, the Doppler factor, 𝛿d, the variation time scale, 𝑇, the minimum Lorentz factor, 𝛾fg', 
the maximum Lorentz factor, 𝛾fhi, and the electron energy distribution, 𝑁>. We used 𝑁> as a 
broken power law, as follows:  

 

𝑁> 𝛾 = 𝐾>×
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where 𝐾> is the electron normalization factor, 𝛾p is the break energy and 𝑝R, 𝑝C are the electron 
spectral indexes. For more details about equations (1) and (2), see Finke et al. (2008). 

2.2 Markov chain Monte Carlo method (MCMC) 

MCMC is a method of estimating the probability distribution of parameters using random 
numbers. The probability distribution gives us the optimal values of parameters, as the mean or 
median of the distribution, and their uncertainties. According to the Bayes' theorem, the posterior 
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distributions of the parameters 𝑃 𝒙 𝒚  are proportional to the likelihood function 𝐿 𝐲|𝐱  times 
prior distribution 𝑝 𝒙 , as follows: 

 

𝑃 𝒙 𝒚 = 𝐿 𝒚|𝒙 𝑝 𝒙
𝑍 ,          𝑍 = 𝐿 𝒚 𝒙 𝑝(𝒙) � .                                                                                (4) 

 
Here, the vectors x and y represent the model parameters and the data, respectively. The prior 
distributions of a part of parameters may be given by past studies. For example, 𝛿d can be esti-
mated from VLBI observations with uncertainty. In this case, we can use the probability distribu-
tion obtained from such estimations as a prior, instead of fixing the value.  

We used the adaptive Metropolis algorithm to sample the posterior distribution (Robbins 
et al., 1951). This method learns the variance-covariance matrix of the proposed distribution from 
MCMC samples to perform efficient sampling. The variance-covariance matrix is updated from 
step n-1 to n, as follows: 
	
𝝁� ← 𝝁�lC + ℎ�(𝒙� − 𝝁�lC),  

← +�lC� 	𝑢� 𝒙� − 𝝁�lC 𝒙� − 𝝁�lC K − 	�lC ,                                                         (5) 

 
 
where, 𝝁' is the mean value, is the variance-covariance matrix, and 𝜎�is the scale parameter. 
FA is 1 when the candidate of the next state is accepted, and 0 when it is not. 𝛼 is the acceptance 

rate. ℎ', 𝑢'	and	𝑠'	are	learning	coefficients, and	we	set	ℎ' = 𝑢' = 𝑠' =
CR

'FCRR.R
	in this study. 

3. Results 

3.1 Experiments with artificial data 

 
Fig 1. The SED of the artificial data. 

Fig 2. Trace plots of 𝐵	 left , 	𝛿d	 middle , 𝑝R(right) obtained with the non-informative priors. The 
dotted line indicates each true value. 

𝜎�� ← 𝜎�lC� + 𝑠�(FA' − 𝛼), 



MCMC estimation of SED model parameters using multi-wavelength data of Mrk 421 Y. Yamada 

4 

Fig 3. Trace plots all 8 parameters of the SED model obtained with the Gaussian prior for 𝑇. The 
dotted line indicates each true value. 
 

We analyzed artificial SED data whose true SSC parameters were known using MCMC 
in order to investigate the correlation between the parameters and the necessity of prior distribu-
tions. The SSC parameters used in this study were referred from Itoh et al. (2015): 𝐵=0.042 G, 
𝛿d=19.5, 𝑇=82540 s, 𝐾>=2.0×104�, 𝛾�=1.2×10�, 𝑝R = 2.5, 𝑝C = 3.86, 𝛾fg'=100 and 𝛾fhi =
1.0×10¢. Figure 1 shows the artificial SED data. We generated the data by adding a Gaussian 
noise to the SED values calculated by the SSC parameters. The standard deviation of the Gaussian 
noise was 50% of the model SED values. The frequency coverage of the data is an ideal one. We 
can actually obtain only a part of those data in real observations. We confirmed that 𝛾fhi was not 
constrained by the data. Hence, we gave its true value in MCMC iterations, and did not estimate 
it. 

We define the likelihood function as the following normal distribution, as follows: 
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where, 𝜎d is the standard deviation and 𝑑g is the SED data. First, we set non-informative priors to 
all parameters. Figure 2 shows the trace plots of 𝐵, 𝛿d	and	𝑝R. The blue dotted lines indicate the 
true values of each parameter. As can be seen in the figure, the MCMC samples cluster with 
ranges of parameters significantly deviate from the true values throughout the iterations. In addi-
tion, the MCMC samples do not converge to the stationary distribution. We confirmed that 𝐵, 𝛿d 
and 𝑇 are strongly correlated in the MCMC samples. All these three parameters are related to the 
normalization factor of the SED, as shown in equations (1) and (2). Hence, we consider that these 
three parameters are degenerated, and cannot be determined independently. Therefore, more in-
formative priors are needed for them. 

We used a Gaussian prior for 𝑇. 
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𝑇 can be estimated from the light curve. We set 𝑇f>h'=82540 s, a true value of the artificial data. 
The standard deviation of the prior was set to be 𝜎¬=1000.0 s. This is the maximum value to 
obtain the stationary distribution from MCMC samples. The trace plots obtained with the prior 
are shown in Figure 3. We can see that the MCMC samples of all parameters converge to the 
stationary distributions. This result demonstrates that the prior distribution of T is effective to 
estimate the SED parameters. 

The actual observations provide SEDs with less data points than those in Figure 1. As a 
result, the MCMC convergence becomes worse than that in Figure 3. In such a case, we found 
that it is effective to use a prior distribution for 𝛿d in addition to 𝑇.  

3.2 Estimation of the SED model parameters of Mrk 421 

Fig 4. SEDs of Mrk421 with the SSC model optimized by MCMC. The model SEDs are indicated as 
the dashed lines with the same colors as those of the data (the filled circles). 

Fig 5. The left panel shows the trace plots of parameter 𝑝R on MJD 55252. The right panel shows its 
probability distribution. 

Fig 6. The upper panel shows the 0.3-10 keV flux measured by XRT/Swift of Mrk 421 between 
2009 November to 2011 March. The lower panel shows the time variations of 𝛾p. 
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As mentioned in section 3.1, we found that it was effective to use prior distributions for 
𝑇 and 𝛿d to estimate the SED model parameters. In this section, we report on the estimations of 
the SED parameters of Mrk 421 using this method. We used simultaneous observations of Mrk 
421 with Fermi-LAT, Swift-XRT, and the 1.5-m optical telescope, Kanata from 2009 to 2011 
reported in Itoh et al. (2015). We estimated the model parameters of SEDs for 12 epochs. We set 
a Gaussian prior of 𝛿d in addition to the prior of 𝑇. Abdo et al. (2011) report that 𝛿d of Mrk 421 
is ~21 based on the analysis of rich SED data. We used it as the mean of the Gaussian prior. The 
standard deviation of the 𝛿d prior was set to be a large value, 10.0 to allow deviations from the 
mean. Four examples of the observed and optimized model SEDs are shown in Figure 4. The SSC 
models well explain the observations. The SED data of Mrk 421 cannot constrain not only 𝛾fhi, 
but also 𝛾fg'. Hence, we fixed 𝛾fhi and 𝛾fg' as 100 and 1.0×10¢ in our analysis. 

Figure 5 shows the trace plot and the posterior distribution of 𝑝R on MJD 55252. We can 
confirm that the MCMC samples converges to a stationary distribution in the trace plot. The pos-
terior distribution is symmetric without any major local peaks. The optimal value of the parameter 
and its uncertainty are naturally defined as the mean and 68% confidence interval of the distribu-
tion.  

As the case in Figure 5, we obtained the optimal values and their uncertainties of 7 pa-
rameters for 12 epochs. We found that six parameters (𝐵, 𝛿d, 𝐾>, 𝛾p, 𝑝R, 𝑝C) significantly changed 
with time even when the uncertainties were considered. Among them, we focus attention on the 
break energy, 𝛾p. Figure 6 shows the X-ray light curve and the time variation of 𝛾p. As can be 
seen in Figure 6, 𝛾p shows a clear positive correlation with the X-ray flux. This result suggests 
that the variations of the X-ray flux was mainly caused by the fluctuations of the break energy. 
Similar results on Mrk 421 were also reported in Itoh et al. (2015) and Bartolli et al. (2016). Our 
results confirmed them with uncertainties of estimations. More detailed reports on the MCMC 
estimated SED parameters will appear in a forthcoming paper. 
 

4. Summary and Conclusion 

We developed a method to estimate the physical quantity in jets using MCMC and suc-
ceeded in finding the optimal parameters and uncertainties. In the case of the SEDs provided by 
actual observations, we confirmed that 𝐵, 𝛿d and 𝑇 are strongly correlated. In order to achieve 
MCMC convergence, the prior distributions are required for at least one parameter among them. 
The MCMC analysis of the data of Mrk 421 suggests that the variations of the X-ray flux was 
mainly caused by the fluctuations of the break energy. 
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