

Blazar spectral sub-classes

- ✓ Low synchrotron peaked (LSP) $v_{s,peak} < 10^{14} \text{ Hz}.$
- ✓ Intermediate synchrotron peaked (ISP) 10^{14} Hz < $v_{s,peak}$ < 10^{15} Hz.
- ✓ High synchrotron peaked (HSP) $v_{s,peak} > 10^{15}$ Hz.

The peak frequencies of the LE and HE components correlate:

- When the radio/total power increases, both LE and HE peaks shift to lower frequencies.
- Luminosity ratio between HE and LE peaks (Compton dominance) increases with Lbol.

Radio and γ-ray emission connection

The Fermi-LAT revealed that blazars dominate the census of the γ-ray sky

Is there any correlation between radio and γ-ray emission?

Emission models (e.g. SSC, EC), γ-ray emission region, EBL attenuation, Blazar sequence.

Ackermann et al. 2011: **strong** (r=0.46) and **significant** (p=9 \times 10⁻⁸) correlation between radio and **100 MeV - 100 GeV** γ -ray emission.

- 1FGL AGNs.
- Archival (8 GHz) and concurrent (15GHz) obs. (OVRO).
- Statistical significance with Pavlidou+2012 method.

The correlation strenght depends on: simultaneity, blazar type and energy band

weaker correlation at higher γ-ray energies

Radio and VHE emission connection

Is there any correlation between radio and VHE γ-rays?

At present elusive due to the lack of a homogeneous coverage of the VHE sky

Imaging atmospheric Cherenkov telescopes:

- Pointing mode obs.
- Limited field of view.
- Limited observing time.
- Sources in a peculiar state.

VHE catalogs strongly biased

1FHL - First Fermi-LAT catalog of sources above 10 GeV (Aug 2008 - Aug 2011).

Large, deep and unbiased sample in the energy range 10-500 GeV.

393/514 (76%) — AGNs

330/393 (84%) — Blazars

Blazars dominate the γ-ray sky at E>10 GeV

Correlation analysis: scatter plots

LSP -> red squares, ISP -> green squares, HSP -> blue squares

Statistical significance -> method based on permutations of measured quantities (Pavlidou+2012):

- ✓ same lum. dynamical range and properties as the original sample;
- observational biases and distance effects.

Correlation analysis: results

-							
_	Source	e type	Catalog	Number of sources	Number of z-bins	r-Pearson	Significance
_	All sources		1FHL	147	14	-0.05	0.59
			3FGL	147	14	0.71	$< 10^{-6}$
	BL Lac		1FHL	100	9	0.12	0.55
			3FGL	100	9	0.70	$< 10^{-6}$
	FSRQ		1FHL	44	4	-0.01	0.99
			3FGL	44	4	0.49	$< 10^{-6}$
	HSP		1FHL	60	5	0.57	1.0×10^{-6}
			3FGL	60	5	0.77	$< 10^{-6}$
	ISP		1FHL	23	2	0.19	0.40
			3FGL	23	2	0.46	2.5×10^{-2}
	LSP		1FHL	52	5	0.21	0.12
			3FGL	52	5	0.43	3.0×10^{-6}

Radio VLBI vs. hard γ-ray emission (1FHL):

- No evidence for a correlation (full sample, FSRQs, BL Lacs, LSP, ISP).
- Strong and significant correlation for HSP objects.

Radio VLBI vs. soft γ-ray emission (3FGL):

Strong and significant correlation for all sub-classes.

2FHL: scatter plots

Second Fermi-LAT catalog of sources above 50 GeV (2FHL)

The **2FHL** contains 360 γ-ray sources detected by *Ferm*i-LAT in the energy range between 50 GeV and 2 TeV, detected during the first 80 months of the mission.

LSP -> red squares, ISP -> green squares, HSP -> blue squares

2FHL Correlation analysis: results

Source type	Catalog	Number of sources	Number of z-bins	r-Pearson	Significance
All sources	2FHL	76	7	0.13	0.36
	3FGL	76	7	0.72	$< 10^{-6}$
BL Lac	2FHL	63	6	0.23	0.34
	3FGL	63	6	0.73	$< 10^{-6}$
HSP - with z	2FHL	48	4	0.57	7.0×10^{-6}
	3FGL	48	4	0.58	$< 10^{-6}$
HSP - all	2FHL	84	8	0.61	$< 10^{-6}$
	3FGL	84	8	0.53	$< 10^{-6}$

Including HSP objects without know redshift

Radio VLBI vs. hard γ-ray emission (1FHL):

- No evidence for a correlation (full sample and BL Lacs).
- > Strong and significant correlation for HSP objects (See also Piner & Edwards 2014).

Radio VLBI vs. soft γ-ray emission (3FGL):

> Strong and significant correlation for all sub-classes.

Correlation analysis: discussion

Powerful objects (i.e. FSRQs and BL Lacs of the LSP type):

- soft γ-ray spectra -> HE component peak at energies lower than those sampled by LAT;
- severe cooling losses of the emitting particles.

Weak objects (i.e. HSP objects):

- Energy losses less severe -> HE peak which is above ~100 GeV.
- The part of the HE spectrum affected by cooling effects is beyond the LAT energy range;
- rising spectrum both in the 3FGL and 1FHL/2FHL catalogs.

Lico et al. 2017

Summary

Radio VLBI vs. soft y-ray emission (3FGL):

• Strong and significant correlation r = 0.7, $p < 10^{-6}$.

Radio VLBI vs. hard γ-ray emission (1FHL & 2FHL):

No evidence for a correlation

full sample: r=-0.05.

Strong correlation for HSP objects:

r = 0.6, $p = 10^{-6}$.

Lico et al. 2017 arXiv:1708.06201.

Thank you!