The Konus-*Wind* catalog of gamma-ray bursts with known redshifts I. Bursts detected in the triggered mode

Anastasia Tsvetkova on behalf of the Konus-Wind team Ioffe Institute, St.Petersburg, Russia

tsvetkova@mail.ioffe.ru

Contents

- Motivation
- The Konus-*Wind* experiment
- The burst sample
- The GRB analysis and results
- Rest-frame hardness-intensity correlations
- Selection effects
- GRB detection horizon
- GRB luminosity and energy release functions
- GRB formation rate
- Summary and conclusion

The talk is based on the paper Tsvetkova, Frederiks, Golenetskii et al., ApJ accepted

Motivation

- ~450 GRBs with reliable z by 2016 June (>200 observed by Konus-Wind);
- Redshift -> distance, age, rest-frame energetics;
- The unbiased comparison between GRBs;
- Possibility to test GRB models;
- GRBs could probe the properties of high-redshift universe:
 - Cosmic expansion
 - □ Star formation history at high redshifts
 - Reionization history
 - Metal evolution
 - □ History of cosmic acceleration
 - □ Evolution of dark energy

Joint Russian-US Konus-Wind experiment

- The Konus-Wind (KW) is aimed primarily at GRB and SGR studies;
- Launched on November 1, 1994: almost 23 years of continuous operation;
- Observation statistics (triggers): 2900 – GRBs (Fermi ~1500, BATSE ~2700, Swift ~1150),
 - 260 SGRs, 1000 SFs.

Advantages

- Wide energy band (20 keV–20 MeV);
- Exceptionally stable background;
- The orbit of s/c excepts interferences from radiation belts and the Earth occultation;
- Continuous observations of all sky;
- Duty circle 95%;
- Observes almost all bright events (>10⁻⁶erg cm⁻² s⁻¹).

Two modes:

- Waiting mode: G1, G2, G3 @ 2.944 s resolution;
- Triggered mode:
 - LC res. is 2 ms –256 ms, from T_0 -0.512 s to T_0 +230 s; 128-ch spectra (20 keV 20 MeV).
- Two Nal detectors (S1 and S2) are located on opposite faces of spacecraft, observing correspondingly the southern and northern celestial hemispheres;
- ~100-160 cm² effective area;
- Now in orbit near L_1 , up to 2.1 million km (~7 light s) from Earth;
- Light curves (LCs) in three energy windows: G1 (~20–80 keV, at present), G2 (~80–300 keV), and G3 (~300–1200 keV).

The burst sample

- 150 triggered GRBs (1997 Feb to 2016 Jun);
- $\bullet \quad 0.1 \le z \le 5;$
- 12 Type I (the merger-origin, typically short/hard) GRBs;
- 138 Type II (the collapsar-origin, typically long/soft) GRBs;
- 32 GRBs have reasonably-constrained (from optical/IR afterglow or in two spectral band simultaneously) jet breaks times -> collimation.

Analysis

Typical KW light curves

GRB 120119A

 T_{100} is determined at 5 σ excess above background. The durations were calculated using the counts in the G2+G3 energy band (~80–1200 keV at present).

Durations and spectral lags

0.1 s < T_{100} < 458 s, median: 37 s; 0.07 s < T_{90} < 441 s, median: 22 s; 0.03 s < T_{50} < 167 s, median: 7.6 s;

0.08 s $< T_{z100} < 171$ s, median: 14 s; 0.05 s $< T_{z90} < 122$ s, median: 10 s; 0.025 s $< T_{z50} < 50$ s, median: 3 s.

For the 58 GRBs selected for the spectral lag analysis, the numbers of lags calculated are as follows: $\tau_{lagG2G1} - 55$, $\tau_{lagG3G1} - 32$, $\tau_{lagG3G2} - 38$.

The observer-frame energy band G2+G3 corresponds to different energy bands in the sourceframe thus introducing a variable energy-dependant factor which must be accounted for when analyzing the rest-frame durations and spectral lags.

Parameter Name	Min Value	Max Value	Mean Value	Median Value
τ_{lagG2G1} (ms)	0.6	2495	292	150
$\tau_{\rm lagG3G1} \ (\rm ms)$	4.8	5106	543	343
$\tau_{\rm lagG3G2}$ (ms)	2.1	765	176	132
$\tau_{\text{lagG2G1,z}}$ (ms)	0.4	1290	143	68
$\tau_{\rm lagG3G1,z}$ (ms)	3.7	2630	257	133
$\tau_{\text{lagG3G2.z}}$ (ms)	1.4	388	85	68

The spectral lag (τ_{lag}) is a quantitative measure of spectral evolution, when the emission in a soft detector band peaks later or has a longer decay relative to a hard band; a positive τ_{lag} corresponds to the delay of the softer emission.

Spectral analysis

(-E(0+-))

- Two types of spectra:
 - □ Time-integrated (TI) the interval closest to T_{100} ;
 - □ "Peak" close to the time when the peak count rate (PCR) is reached;
- Two spectral models:

• CPL:
$$f(E) \propto E^{\alpha} \exp\left(-\frac{E(2+\alpha)}{E_p}\right)$$

□ Band function (Band et al., 1993):

$$f(E) \propto \begin{cases} E^{\alpha} \exp\left(-\frac{E(2+\alpha)}{E_p}\right), & E < (\alpha - \beta)\frac{E_p}{2+\alpha} \\ E^{\beta} \left[(\alpha - \beta)\frac{E_p}{(2+\alpha)}\right]^{(\alpha - \beta)} \exp(\beta - \alpha), & E \ge (\alpha - \beta)\frac{E_p}{2+\alpha}, \end{cases}$$

- PL model (if both "curved" models result in ill-constrained fits): $f(E) \propto E^{\alpha}$
- BEST model: χ^2_{CPL} - χ^2_{Band} >6 → the Band function;
- 20 cnts/channel binning to ensure Gaussian-distributed count statistics.
- Band function is the best fit model for 54 TI (51 peak) spectra of Type II bursts;
- CPL is the best fit model for 83 TI (86 peak) spectra of Type II bursts;
- PL is the best fit model for GRB 080413B (both TI & peak spectra);
- All Type I burst spectra are fitted best by the CPL function.

Typical KW spectra

GRB 070125

Xspec spectral fits of the time-integrated (left) and the peak (right) spectra.

	Spectrum	Accumulation	Model	α	β	$E_{\rm p}$	F	$\chi^2/{ m dof}$
		interval				(keV)	$(10^{-6}~{\rm erg}~{\rm cm}^{-2}~{\rm s}^{-1})$	(Prob.)
Best	Time-integrated	0.000 - 75.008	GRBM	$-1.10\substack{+0.06\\-0.05}$	$-2.09\substack{+0.06\\-0.08}$	372^{+36}_{-31}	$2.36^{+0.13}_{-0.13}$	$88.6/89\ (0.49)$
	Peak	34.560 - 50.432	GRBM	$-0.99\substack{+0.10\\-0.09}$	$-2.27\substack{+0.15\\-0.27}$	370^{+57}_{-47}	$2.50^{+0.24}_{-0.25}$	$79.7/88 \ (0.72)$
Good	Time-integrated	0.000 - 75.008	CPL	$-1.23\substack{+0.04\\-0.04}$		518^{+41}_{-35}	$1.71\substack{+0.07\\-0.06}$	$118.0/90\ (0.026)$
	Peak	34.560 - 50.432	CPL	$-1.09\substack{+0.06\\-0.06}$		455_{-37}^{+45}	$1.92\substack{+0.10\\-0.09}$	$86.0/89\ (0.57)$

Spectral indices

The fraction of the bursts which violate the -2/3 synchrotron line-of-death: 9% (TI sp.) & 21% (peak sp.) of the 68% CL lower limits on α are shallower. the -3/2 synchrotron cooling limit: 7% (TI sp.) & 3% (peak sp.) of the 68% CL upper limits are steeper.

Peak energies

- E_p for the BEST model varies from ~40 keV to ~3.5 MeV (GRB 090510);
- The TI spectrum E_p distributions for both models peak around 250 keV;
- The peak spectrum E_p distributions peak around 300 keV;
- The corresponding rest-frame $E_{p,z} = (1+z)E_p$ vary from ~50 keV to ~6.7 MeV (GRB 090510);
- The median $Ep \approx 650$ keV for Type I GRBs.

Observer-frame energetics

 1×10^{-6} erg cm⁻² < S <2.9×10⁻³ erg cm⁻² (GRB 130427A) 3×10⁻⁷ erg cm⁻²s⁻¹ < $F_{\text{peak},64}$ < 9.0×10⁻⁴ erg cm⁻²s⁻¹ (GRB 110918A)

Rest-frame energetics

The most energetic KW burst: GRB 090323 ($E_{iso} = 5.81 \times 10^{54}$ erg). The most luminous burst: GRB 110918A ($L_{iso} = 4.65 \times 10^{54}$ erg s⁻¹). e.g. Bloom et al. (2001) or Kovacs et al. (2011)

$$k = \frac{F[E_1/(1+z), E_2/(1+z)]}{F[e_1, e_2]}$$

$$e_1 = 10 \text{ keV}, e_2 = 10 \text{ MeV};$$

 $E_1 = 1 \text{ keV}, E_2 = (1+z) \cdot 10 \text{ MeV}$

Collimation-corrected rest-frame energetics

32 (2 Type I & 30 Type II) GRBs have reasonablyconstrained (from optical/IR afterglow or in two spectral band simultaneously) t_{iet} : $1.9^{\circ} < \theta_{iet} < 25.5^{\circ}$ $5.5 \times 10^{-4} < 1 - \cos \theta_{iet} < 0.098$

The brightest KW GRB in terms of both E_v and L_v is GRB 090926A ($E_{\nu} \simeq 1.23 \times 10^{52} \text{ erg}$, $L_{\rm v} \simeq 5.50 \times 10^{51} \, {\rm erg \ s^{-1}}, \, \theta_{\rm iet} \simeq 6.20^{\circ})$

40

35

30

25

20

15

10

5

 10^{47}

 10^{48}

 10^{49}

 10^{50}

Number of bursts

CBM with constant number density Sari et al. (1999)

$$\theta_{\rm jet,HM} = \frac{1}{6} \left(\frac{t_{\rm jet}}{1+z} \right)^{3/8} \left(\frac{n\eta_{\gamma}}{E_{\rm iso,52}} \right)^{1/8}$$

Hardness-duration distribution

Hardness-duration distribution

☆ GRB 110918A Frederiks et al. (2013)

Nukers estimate (Tremaine et al. 2002): χ^2

$$= \sum_{i=1}^{N} \frac{(y_i - ax_i - b)^2}{a^2 \sigma_{xi}^2 + \sigma_{yi}^2 + \sigma_{\text{int}}^2}$$

Correlation	N	$ ho_S$	P_{ρ_S}	a	b	$a_{\sigma_{ m int}}$	$b_{\sigma_{ m int}}$	$\sigma_{ m int}$			
Type I GRBs											
$E_{\rm p,i}$ vs S	12	0.74	$5.8 imes 10^{-3}$	0.408 ± 0.043	4.98 ± 0.22	0.496 ± 0.117	5.52 ± 0.62	0.135			
$E_{\mathrm{p,i},z}$ vs E_{iso}	12	0.83	$9.5 imes 10^{-4}$	0.364 ± 0.030	-15.70 ± 1.53	0.266 ± 0.068	-10.61 ± 3.47	0.181			
$E_{\rm p,p}$ vs $F_{\rm peak}$	12	0.54	$7.1 imes 10^{-2}$	0.340 ± 0.045	4.39 ± 0.19	0.349 ± 0.161	4.52 ± 0.74	0.188			
$E_{\mathrm{p,p},z}$ vs L_{iso}	12	0.67	$1.7 imes 10^{-2}$	0.396 ± 0.034	-17.68 ± 1.78	0.243 ± 0.078	-9.61 ± 4.07	0.200			
Type II GRBs											
$E_{\rm p,i}$ vs S	137	0.59	3.7×10^{-14}	0.418 ± 0.002	4.06 ± 0.01	0.295 ± 0.031	3.66 ± 0.14	0.227			
$E_{\mathrm{p,i},z}$ vs E_{iso}	137	0.70	1.4×10^{-21}	0.469 ± 0.003	-22.35 ± 0.14	0.338 ± 0.026	-15.27 ± 1.37	0.229			
$E_{\rm p,p}$ vs $F_{\rm peak}$	136	0.58	2.2×10^{-13}	0.453 ± 0.004	4.68 ± 0.02	0.363 ± 0.041	4.31 ± 0.21	0.253			
$E_{\mathrm{p,p},z}$ vs L_{iso}	136	0.73	1.6×10^{-23}	0.494 ± 0.005	-23.32 ± 0.26	0.347 ± 0.029	-15.52 ± 1.51	0.251			
Type II GRBs with t_{jet} estimates											
$E_{\mathrm{p,i},z}$ vs E_{iso}	30	0.82	4.1×10^{-08}	0.536 ± 0.004	-27.34 ± 0.21	0.418 ± 0.053	-19.62 ± 2.82	0.233			
$E_{\mathrm{p,i},z}$ vs E_{γ}	30	0.76	1.1×10^{-06}	0.604 ± 0.008	-27.93 ± 0.42	0.499 ± 0.077	-22.69 ± 3.90	0.266			
$E_{\mathrm{p,p},z}$ vs L_{iso}	30	0.75	1.5×10^{-06}	0.529 ± 0.008	-25.12 ± 0.43	0.373 ± 0.063	-16.91 ± 3.30	0.282			
$E_{\mathrm{p,p},z}$ vs L_{γ}	30	0.61	3.1×10^{-04}	0.731 ± 0.016	-33.87 ± 0.78	0.376 ± 0.097	-16.14 ± 4.86	0.343			

Note. — N is the number of bursts in the fit sample, ρ_S is the Spearman correlation coefficient, P_{ρ_S} is the corresponding chance probability, $a(a_{\sigma_{int}})$ and $b(b_{\sigma_{int}})$ are the slope and the intercept for the fits without (with) intrinsic scatter σ_{int} .

Selection effects

 $S_{lim} \sim 3 \times 10^{\text{-}6} \ erg \ cm^{\text{-}2}$

 $F_{lim} \sim 1 \times 10^{-6} \text{ erg cm}^{-2} \text{ s}^{-1}$

GRB detection horizon

$$\operatorname{PCR}_{z}(\Delta T_{\operatorname{trig}}) = a \times \operatorname{PCR}_{z0}(a \cdot \Delta T_{\operatorname{trig}}) \times \frac{N_{\operatorname{G2}}(\alpha, \beta, a \cdot E_{\operatorname{p,p}})}{N_{\operatorname{G2}}(\alpha, \beta, E_{\operatorname{p,p}})} \times \left(\frac{D_{\operatorname{M}}(z_{0})}{D_{\operatorname{M}}(z)}\right)^{2}$$

Trigger threshold: 9σ

Trigger time scales ΔT_{trig} : 140 ms or 1 s,

 $a = (1+z_0)/(1+z),$

 $PCR_{z0}(a\Delta T_{trig})$ is reached in the observed G2 light curve on the modified time scale $N_{G2}(\alpha,\beta,E_{pp})$ is the best spectral model count flux in G2 calculated using the DRM, $N_{G2}(\alpha,\beta,aE_{pp})$ is the corresponding flux in the redshifted spectrum

Luminosity and energy release functions

Without loss of generality, the total luminosity function (LF; number of bursts per unit luminosity) $\Phi(L_{iso}, z)$ can be rewritten as

$$\begin{array}{lll} \Phi(L_{\rm iso},z) &=& \rho(z)\phi(L_{\rm iso}/g(z),\alpha_s)/g(z) & \mbox{Lloyd-Ronning (2002)} \\ && \rho(z) - \mbox{GRB formation rate (GRBFR)} \\ && \phi(L_{\rm iso}/g(z)) - \mbox{local LF} \\ && g(z) = (1+z)^{\delta} - \mbox{luminosity evolution (Lloyd-Ronning 2002)} \\ && \alpha_s - \mbox{shape of the LF (Yonetoku 2004)} \end{array}$$

Non-parametric Lynden-Bell (1971) statistical technique: Efron & Petrosian (1992)

Examples of evolving astrophysical objects:

Galaxies: the local luminosity function varies for early- and late-type galaxies (Marzke et al. 1994)

Quasars: L~(1+z)³, z<1.5 (Boyle 1993; Hewett, Foltz, & Chaffee 1993); L~(1+z)^{1.5}, z<3 (Hewett et al. 1993)</p>

Selection effects and luminosity (energy release) evolution

The present-time GRB luminosity and energy release functions

The existence of a sharp cutoff of the isotropic energy distribution of KW and *Fermi*/GBM GRBs around $\sim 1-3\times10^{54}$ erg was suggested recently by Atteia et al. (2017).

The present-time GRB luminosity and energy release functions

1

CPL:

$$\psi(x) \propto \begin{cases} x^{\alpha_1}, & x \le x_b \\ x_b^{(\alpha_1 - \alpha_2)} x^{\alpha_2}, & x > x_b \end{cases}$$

 $\psi(x) \propto x^{\alpha} \exp(-x/x_{\rm cut})$

 α_1 , α_2 – PL indices at the dim and bright distribution segments, x_b – breakpoint of the distribution.

 α – PL index, x_{cut} – cutoff luminosity (or energy).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Data	Evolution (PL index)	Model	χ^2 (d.o.f.)	α_1	α_2	$\log x_b \\ (\log x_{\rm cut})$
$\psi(E_{\rm iso})$ no evolution BPL 17.2 (126) -0.35 ± 0.01 -1.29 ± 0.12 1.80 ± 0.05	$\psi(L')$ $\psi(L')$ $\psi(E')$ $\psi(L_{iso})$ $\psi(L_{iso})$ $\psi(E_{iso})$	$\delta_L = 1.7$ $\delta_L = 1.7$ $\delta_E = 1.1$ $\delta_E = 1.1$ no evolution no evolution no evolution no evolution	BPL CPL BPL CPL BPL CPL BPL	$\begin{array}{c} 2.05 \ (133) \\ 18.5 \ (134) \\ 19.2 \ (126) \\ 12.7 \ (127) \\ 2.32 \ (133) \\ 8.90 \ (134) \\ 17.2 \ (126) \end{array}$	$\begin{array}{c} -0.47 \pm 0.06 \\ -0.60 \pm 0.04 \\ -0.36 \pm 0.01 \\ -0.31 \pm 0.02 \\ \hline -0.47 \pm 0.06 \\ -0.54 \pm 0.04 \\ -0.35 \pm 0.01 \end{array}$	-1.05 ± 0.11 -1.28 ± 0.11 -1.00 ± 0.10 -1.29 ± 0.12	$\begin{array}{c} 0.27 \pm 0.12 \\ 2.10 \pm 0.15 \\ 1.30 \pm 0.04 \\ 2.09 \pm 0.04 \\ 0.96 \pm 0.15 \\ 2.58 \pm 0.11 \\ 1.80 \pm 0.05 \end{array}$

GRB formation rate

The low-z GRBFR excess over SFR is in agreement with the results reported in Yu et al. (2015) and Petrosian et al. (2015).

SFR: Hopkins (2004), Bouwens et al. (2011), Hanish et al. (2006), Thompson et al. (2006), Li (2008).

 L_{iso} : red open circles: no luminosity evolution; red filled circles: δ_L = 1.7; E_{iso} : green open squares: no energy evolution; green filled squares: δ_E = 1.1.

Summary

- A systematic study of 150 GRBs (from 1997 February to 2016 June) with known redshifts (0.1 ≤ z ≤ 5) was performed: 12 Type I (the merger-origin, typically short/hard) GRBs & 138 Type II (the collapsar-origin, typically long/soft) GRBs;
- Temporal analysis: burst durations & spectral lags;
- Spectral analysis with the CPL and Band functions;
- Energetics:
 - □ Observer-frame *S* and *F*_{peak} (10 keV−10 MeV);
 - **Q** Rest-frame E_{iso} and L_{iso} ;
 - **Collimation-corrected** E_{v} and L_{v} (for 32 GRBs with reasonably-constrained jet breaks).

Summary

- The "Amati" and "Yonetoku" correlations are confirmed for the KW sample;
- The correction for the jet collimation does not improve the "Amati" and "Yonetoku" correlations for the KW sample;
- The influence of instrumental selection: the regions above the limits, corresponding to the bolometric fluence $S_{\text{lim}} \sim 3 \times 10^{-6} \text{ erg cm}^{-2}$ (in the $E_{\text{iso}} z$ plane) and bolometric peak energy flux $F_{\text{lim}} \sim 1 \times 10^{-6} \text{ erg cm}^{-2} \text{ s}^{-1}$ (in the $L_{\text{iso}} z$ plane) may be considered free from the selection biases;
- KW GRB detection horizon: Type I: z_{max} =5.3, Type II: $z_{max} \sim 16.6$, stressing the importance of GRBs as probes of the early Universe;
- The GRB luminosity evolution (is present @ $\sim 1.6\sigma$,), LF and EF, and the evolution of the GRBFR were estimated accounting for the instrumental bias;
- The derived GRBFR features an excess over the SFR at z < 1 and nearly traces the SFR at higher redshifts.

Thank you!

The talk is based on the paper Tsvetkova, Frederiks, Golenetskii et al., ApJ accepted

tsvetkova@mail.ioffe.ru