Follow-up of Gravitational Wave Events with the Fermi-LAT. **Current Status and Prospects for the Future**

Giacomo Vianello (Stanford University), Daniel Kocevski (NASA), Judith Racusin (NASA/GSFC), Sara Buson (NASA/GSFC), Niccolo Di Lalla (INFN Pisa)

ra pace Te escope

www.nasa.gov/fern

Nicola Omodei (Stanford U.)

for the Fermi/LAT collaboration

7th International Fermi Symposium

The Discovery

September 14, 2015, the LIGO Scientific Collaboration and Virgo Collaboration made the first observation of gravitational waves, originating from a pair of merging black holes using the Advanced LIGO detectors.

- 6 GW events announced by the LIGO/VIRGO **Collaboration:**
 - 5 BH- BH: GW150914, LVT151012, GW151226,GW170104, GW170814;
 - 1 NS-NS: GW170817;
- BH-BH mergers are not expected to produce EM radiation.
- **NS-NS:** predicted (and confirmed) to have EM radiation.
- General strategy for Fermi-LAT searches at highenergy:
 - Automated full sky searches of transients;
 - Specific searches in the LIGO contours;
 - Specific followups of detected counterparts;
 - All done automatically in pipelines to quick alert the community;

Following up LIGO events

Nicola Omodei – Stanford/KIPAC

ipelines

Ω

Ð

Timescal

S

sient

Fermi Transient Searches

ground search ms - s **GCN Notices** sgrb_search.html ms Pulsars

7th Fermi symposiun

- We developed a novel technique to search for EM counterpart in LAT data starting from LIGO probability maps: - LVC probability maps (in HEALPix) downscaled to match the Fermi LAT PSF (~4 degrees at 100 MeV); - We center a ROI in each pixel (p>0.9), and we run standard likelihood analysis (Unbinned);
- Cumulative coverage of the map as a function of time:
 - In some cases we started with ~40-50% of the credibility region in the field of view at the time of the trigger;
 - In all cases we reached 100% of the coverage within 8 ks;
 - Different pixels of the map enter and exit at different time:
 - We set up two different analysis: fixed time window and adaptive time window
 - see: Ackermann et al. 2016 (GW150915), Racusin et al. 2017 (GW151226, LVT151012), Goldstein at al. 2017 (GW170114), Vianello et al. 2017 (Methods)

From LVC probability maps to LAT analysis

Nicola Omodei – Stanford/KIPAC

- The LAT and the GBM do not collect data when in the SAA
 - For different instument requirements, the SAA definition for the LAT is slightly larger (14%) than the **GBM** one;
 - At the time of the GW event (and **GBM trigger)**, the LAT was in the SAA;
 - We observe the entire region between t_{GW} +1153 – t_{GW} +2017; – Upper bound (0.1–1 GeV): $- F < 4.5 \times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1}$ - At the distant of GW170817:
- - $L_{iso} < 9.3 \times 10^{43} \text{ erg s}^{-1}$

energy

7th Fermi symposium

GW170817/GRB170817A, an unlucky event

★ Very strong constrain on the **Iuminosity of GRB170817A at high**

GW170817/GRB170817A, long time monitoring

- Given the continuous evolution of the transient, we are keeping the source monitored;
- No significant excess at later time: - F< 9.7×10⁻¹¹ to 3.7×10⁻⁸ erg cm⁻² s⁻¹ - L< 2.1×1043 to 8.1×1045 erg s⁻¹
- On the life time of the mission (9 years): $-F < 1.32 \times 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$ - L< 2.9×1041 erg s⁻¹

- GBM flux (10 keV 1 MeV): in the middle of the GBM SGRB population:
- **Detectability of SGRBs depends on the off-axis angle:** - LAT can repoint within few hundreds of seconds;

- other 4 SGRBs of similar fluence have been detected by the LAT at high-energy (>100 MeV);

Fermi LAT sensitivity to SGRBs

- LAT detected GRBs exhibit a long lasting high-energy emission (lasting ~200 seconds for SGRBs);
- We estimate the average flux a SGRB would need to be detected by the LAT (50% of the time with TS≥25)
 - -In a 100 s exposure starting at T_0 , T_0+2s , +10, +100 (typical for LAT detected SGRBs)
 - **–** Between T₀+1153 and T₀+2027 (as GRB170817A);
- LAT detected SGRB consistent with our significance estimation;
- Even the brightest SGRB detected by the LAT (090510) would have not been detected if the observation had started at ~1000 seconds;
- We need to start observing a burst within ~100s to really have a chance of seeing it;
- Rate estimation:
 - **LAT sees 23% of the all sky SGRBs within 100 s (either a** detection or upper bound)
 - **LAT detects 5% of all GBM-detected SGRB**
 - -Assuming 1 (2) GW+SGRB events per year : 5% (10%) probability to detect it in the LAT
 - Modifying the observing profile (re-pointing every SGRB within 100 seconds): 7% (13%)

- association of SGRBs with merging neutron stars;
- LAT was in the SAA at the time of the GW/GBM trigger: Upper bound at t0+1000s
 - Very constraining, due to its proximity
 - Continuous monitor at late times
- Prospects for the future:
 - LAT probability to detect a GW event at high-energy: $\sim 5\%$ -10%.
- exciting field of multi messenger astronomy.

Fermi-LAT observation of the LIGO/Virgo event GW170817 => (arXiv:1710.05450)

The discovery of GW170817/GRB 170817A strongly supports the conjectured

– With the improvement in LIGO-Virgo sensitivity: larger detection rate;

• From what we know from GBM and LAT: there is every reason to believe that gamma-ray observations will play a crucial rule in the developments of the

Nicola Omodei – Stanford/KIPAC

Backup Slides

7th Fermi symposium

Nicola Omodei – Stanford/KIPAC

- sGRB phenomenology in a nutshell: \bullet
 - Progenitors: NS-NS, NS-BH -> BH
 - On-axis sGRB:
 - More rare (needs to point toward us);
 - "Standard" afterglow due to the Jet-ISM interaction
 - Observed at high-energy by the LAT (8 sGRB) detected by the LAT so far);
 - temporally extended emission detected up to ~100 seconds after the trigger;
 - Off-axis:
 - No prompt emission (or weak?) in <MeV (due to the beaming);
 - Isotropic optical bump ("kilonova");
 - Late "orphan" X-ray afterglow (when the beaming decreases);
 - At high-energy: little is know...

Short GRB associated with GW events

Nicola Omodei – Stanford/KIPAC

- Duration estimated from the full coverage of the event: -Typically ~10 ks;
- Standard unbinned likelihood analysis:
 - -In each pixel, Test Statistics (TS) evaluates the significant of an excess with respect the background (galactic + isotropic emission + known point source from 3FGL);
 - -Significance map for every LIGO/Virgo alert;
 - -When no detection (TS<25): map of upper bounds;
- Bayesian upper bounds:
 - -We developed a fully bayesian method to calculate a "global" upper bound, using the probability map as prior (and using Markov-Chain Monte Carlo to marginalize the **posterior probability**);

 - These UB can be used to constrain models if the location of the GW event is unknown.

- Adaptive time window:
 - -Entry-exit for each pixel in the sky;
 - **–**During the trigger or the orbit right after;
 - -Scan an interval of days (before and after the trigger);
- Standard unbinned likelihood analysis:
 - **–TS (significance) maps;**
 - -Maps of upper bounds;
- These upper bounds depend on the location of the pixel in the sky, which also determines the interval of time we used in our analysis:
 - -The colors of the horizontal lines in the last panel match the colors of the pixels in the second panel;
 - -They can be used to constrain models if the location of the GW event is known (for example from its detection by some other facility);

