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September 14, 2015, the LIGO Scientific Collaboration and Virgo
Collaboration made the first observation of gravitational waves,
originating from a pair of merging black holes using the Advanced

LIGO detectors.
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https://en.wikipedia.org/wiki/LIGO
https://en.wikipedia.org/wiki/Virgo_interferometer
https://en.wikipedia.org/wiki/First_observation_of_gravitational_waves
https://en.wikipedia.org/wiki/Binary_black_hole
https://en.wikipedia.org/wiki/Stellar_collision
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e 6 GW events announced by the LIGO/VIRGO
Collaboration:

— 5 BH- BH: GW150914, LVT151012,
GW151226,GW170104, GW170814;

— 1 NS-NS: GW170817;

* BH-BH mergers are not expected to produce EM
radiation.

GW170104

LVIL151012

GW151226
* NS-NS: predicted (and confirmed) to have EM
radiation.
 General strategy for Fermi-LAT searches at high-
energy:
— Automated full sky searches of transients; Y G\W150914

— Specific searches in the LIGO contours;
— Specific followups of detected counterparts;

— All done automatically in pipelines to quick GW170814
alert the community;
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e We developed a novel technique to search for EM counterpart in LAT data starting from LIGO probability maps:
— LVC probability maps (in HEALPix) downscaled to match the Fermi LAT PSF (~4 degrees at 100 MeV);
— We center a ROI in each pixel (p>0.9), and we run standard likelihood analysis (Unbinned);
« Cumulative coverage of the map as a function of time:
— In some cases we started with ~40-50% of the credibility region in the field of view at the time of the trigger;
— In all cases we reached 100% of the coverage within 8 ks;
— Different pixels of the map enter and exit at different time:
— We set up two different analysis: fixed time window and adaptive time window

— see: Ackermann et al. 2016 (GW150915), Racusin et al. 2017 (GW151226, LVT151012), Goldstein at al. 2017
(GW170114), Vianello et al. 2017 (Methods)

GW170814
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/) — GW170817
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MET = 524399446 0.0
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GW170817/GRB170817A, and other GBM GRBs
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Boresight Angle

e GBM flux (10 keV — 1 MeV): in the middle of the GBM SGRB population:

— other 4 SGRBs of similar fluence have been detected by the LAT at high-energy (>100 MeV);

* Detectability of SGRBs depends on the off-axis angle:
— LAT can repoint within few hundreds of seconds;

7th Fermi symposium
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Fermi LAT sensitivity to SGRBs
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o LAT detected GRBs exhibit a_long lasting high-energy emission
(lasting ~200 seconds for SGRBs);

e We estimate the average flux a SGRB would need to be detected
by the LAT (50% of the time with TS225)

—In a 100 s exposure starting at To, To+2s, +10, +100 (typical
for LAT detected SGRBs)

—Between To+1153 and To+2027 (as GRB170817A);

o LAT detected SGRB consistent with our significance estimation;

e Even the brightest SGRB detected by the LAT (090510) would
have not been detected if the observation had started at ~1000
seconds;

e We need to start observing a burst within ~100s to really have a
chance of seeing it;

e Rate estimation:

—LAT sees 23% of the all sky SGRBs within 100 s (either a
detection or upper bound)

— LAT detects 5% of all GBM-detected SGRB

—Assuming 1 (2) GW+SGRB events per year : 5% (10%)
probability to detect it in the LAT

— Modifying the observing profile (re-pointing every SGRB
within 100 seconds): 7% (13%)

Nicola Omodei — Stanford/KIPAC



Conclusions

* The discovery of GW170817/GRB 170817A strongly supports the conjectured
association of SGRBs with merging neutron stars;

 LAT was in the SAA at the time of the GW/GBM trigger: Upper bound at
t0+1000s

— Very constraining, due to its proximity
— Continuous monitor at late times
* Prospects for the future:
— LAT probability to detect a GW event at high-energy: ~ 5%—-10%.
— With the improvement in LIGO-Virgo sensitivity: larger detection rate;

* From what we know from GBM and LAT: there is every reason to believe that
gamma-ray observations will play a crucial rule in the developments of the

exciting field of multi messenger astronomy.
Fermi-LAT observation of the LIGO/Virgo event GW170817 => (arXiv:1710.05450)

7th Fermi symposium Nicola Omodei — Stanford/KIPAC

10



/~

a
EsSserml

Gamma-ray

/ Space Tt‘-le:.rope

7th Fermi symposium

Backup Slides

Nicola Omodei — Stanford/KIPAC

11



/0
@, ermi Short GRB associated with GW events

Gamma-'a}'

/ Space Teleicope

e sGRB phenomenology in a nutshell:
— Progenitors: NS-NS, NS-BH -> BH
— On-axis sGRB: Jet-ISM Shock (Afterglow) /q
» More rare (needs to point toward us); o osyn)

e “Standard” afterglow due to the Jet-ISM
interaction

e Observed at high-energy by the LAT (8 sGRB
detected by the LAT so far);

 temporally extended emission detected up to
~100 seconds after the trigger;

— Off-axis: - OQ

e
* No prompt emission (or weak?) in <MeV (due to ~
the beaming);

* Isotropic optical bump (“kilonova’);

e Late “orphan” X-ray afterglow (when the
beaming decreases);

At high-energy: little is know...
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Metzger & Berger.
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Fixed Time Windows - Adaptive intervals
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 Duration estimated from the full coverage of the event:
—Typically ~10 ks;
 Standard unbinned likelihood analysis:

—In each pixel, Test Statistics (TS) evaluates the significant
of an excess with respect the background (galactic +
isotropic emission + known point source from 3FGL);

—Significance map for every LIGO/Virgo alert;
—When no detection (TS<25): map of upper bounds;
 Bayesian upper bounds:

—We developed a fully bayesian method to calculate a
“global” upper bound, using the probability map as prior
(and using Markov-Chain Monte Carlo to marginalize the
posterior probability);

— These UB can be used to constrain models if the location
of the GW event is unknown.

Nicola Omodei — Stanford/KIPAC
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 Adaptive time window:
—Entry-exit for each pixel in the sky;
—During the trigger or the orbit right after;
—Scan an interval of days (before and after the trigger);
e Standard unbinned likelihood analysis:
—TS (significance) maps;
—Maps of upper bounds;

* These upper bounds depend on the location of the pixel in
the sky, which also determines the interval of time we used
in our analysis:

—The colors of the horizontal lines in the last panel match
the colors of the pixels in the second panel;

—They can be used to constrain models if the location of
the GW event is known (for example from its detection by
some other facility);
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