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Compton telescopes

I Around 1 MeV, the main interaction of photons with matter
is Compton scattering. Dedicated instruments are required to
observe astrophysical sources in this energy range.

I After the COMPTEL space telescope (1991-2000), no new
Compton detectors have been launched.

I Right now, there some projects in an advanced stage of
development, such as e-ASTROGAM (ESA) or AMEGO
(NASA). However, in case one is approved, the timescale
before they are ready to take data is ∼10 yr.

1 / 18



A different approach to the problem

I We instead propose a different solution: we opt for a smaller
and cheaper nano-satellite detector by making use of the
successful CubeSat standard.

I In particular our design uses four units (each 10× 10× 10
cm3), two of which are occupied by the actual scientific
payload.

I By using such a small spacecraft we could potentially build
and launch a new Compton telescope in a timescale of ∼ 1 yr
with a very modest budget of ∼ 500 k€.
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Size comparison with COMPTEL

I Our detector is only 10 cm
wide and 20 cm tall.

I For comparison COMPTEL
was much bigger, being
1.7 m wide and 2.6 m tall.

I Even with the difference in
technology, achieving the
same performance level is no
trivial task.

Fig: schematic of COMPTEL.
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Scientific payload

I The detector consists of a silicon double-sided strip tracker on
top of a CsI(Tl) crystal calorimeter, in a similar fashion to the
Fermi LAT.

I Additionally, we can install a lateral calorimeter around the
tracker to absorb scattered photons which would otherwise be
lost (since they would just exit the detector).

I The payload is in fact very similar to what is planned for
e-ASTROGAM and AMEGO. This would additionally grant
our detector a pathfinder role, thus testing the same
technology to be used in the larger missions.
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Fig: a schematic of the detector (no anticoincidence shield).
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Untracked event reconstruction
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Tracked event reconstruction
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Simulation methodology

I We simulated the detector behaviour by using MEGAlib (see
for example https://doi.org/10.1016), software based on
GEANT 4 and specialized in simulating gamma detectors.

I Various different designs have been tested to try to achieve
the best optimization for the detector.

I The viability of each design was evaluated through its
performance parameters such as effective area, angular
resolution...particular importance is placed on the sensitivity
as an overall performance parameter.
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https://doi.org/10.1016/j.newar.2006.06.049


Effective area

Fig: estimated effective area for different types of events.
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I While tracked events are less numerous (∼25% at ∼1 MeV),
they have a much better total angular resolution, which
improves considerably the SNR.

I At lower energy, there are almost no tracked events, but still a
significant number of untracked ones. While this implies a
worse angular resolution, this is partially compensated by the
much bigger effective area associated to the untracked events.

I We are also able to detect pairs. However, due to the small
detector size, we cannot absorb photons above a few MeVs in
a effective way.
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Fig: effective area for tracked events as function of incident photon energy and angle.
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Background sources

Aside from electronic noise, we have four main sources of
background:

I Extra-galactic background (EGB).

I Charged background due to cosmic rays.

I Earth’s gamma emission (or Earth’s gamma “albedo”).

I Activation, that is the radioactivity induced in the detector
materials by the continuous flux of cosmic rays.
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I The EGB is weak source of background. We also estimate a
contribute of the same order of magnitude for the charged
background, given that installing a simple anticoincidence
shield can prevent > 99.99% of the triggers.

I The main contribution comes from the Earth’s albedo, which
flux in this energy range is very high. It is also extremely
difficult to remove from a data analysis standpoint.

I Activation may also be problematic, although to what extent
precisely is still being studied. The small size of the satellite
should be able to limit this contribution to reasonable levels.
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Sensitivity

Fig: sensitivity for the detector compared to COMPTEL’s (no activation background).
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A first activation estimate

I The simulations for the activation are run using FLUKA, a
fully integrated particle physics MonteCarlo simulation
package.

I This is done by using a simplified geometry for the detector,
without the lateral calorimeter, but adding the aluminium
frame if the spacecraft.

I The simulated cosmic rays are for now only protons for an
orbit at ∼ 550 km, from Corti (arXiv:1511.08790).
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https://arxiv.org/abs/1511.08790


I Activation comes mainly from the CsI calorimeter, with
emissions of the order ∼ 0.1 Hz. Trigger efficiency for such
events is however of the order ∼ 10−3.

I Aside from the emission lines, there is a significant continuum
in the emission which needs to be carefully evaluated.

I Most of the activation comes from the protons with energy
> 10 GeV passing through the detector.
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Fig: gamma photons exiting the calorimeter due to activation.
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Conclusions

I The studies done so far show promising results, given that we
are able to reach about the same level of COMPTEL
performance by using a very small nano-satellite with a
modest budget.

I Further studies are however required to estimate precisely the
impact of activation and electronic noise on the overall
performance.

I The results here presented come mainly from F. Berlato and
G. Lucchetta master’s theses and also from Lucchetta et al.
Activation estimates are instead taken from S. Andreetta
bachelor’s thesis.
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http://iopscience.iop.org/article/10.3847/1538-3881/aa6a1b/meta


Thank you for your attention



Crab Nebula

I As a reference value we computed how many photons we
expect to see from the Crab Nebula.

I We consider only Compton events for a time T = 106 s at
normal incidence, we neglect activation.

I We expect 1.7 · 104 ph for the tracked events with a
SNR= 25%.

I For the untracked events we instead have 2.0 · 105 ph with a
SNR= 6%.



EGB reconstruction

Fig: EGB reconstruction with the detector pointing normally outwards the Earth.



Albedo reconstruction

Fig: Albedo reconstruction with the detector pointing normally outwards the Earth.



Signal-to-noise ratio

Fig: SNR for different types of events (no activation background).



Angular resolution

Fig: angular resolution for different types of events.


