Cosmic neutrinos in the Fermi context

Walter Winter DESY, Zeuthen, Germany

7th International Fermi symposium Garmisch–Partenkirchen, Germany

October 15-20, 2017

Contents

- Introduction
- > Observations and (some of) their implications
- > Generic multi-messenger relationships
- Neutrinos and the origin of cosmic rays? Example: Multi-messenger models for Gamma-Ray Bursts
- Conclusions

Observing TeV-PeV neutrinos with IceCube

A flux of high energy cosmic neutrinos

Observed neutrino flux

> Could be a two-component flux, but not yet statistically evident

IceCube/Claudio Kopper at ICRC 2017

Multi-messenger astrophysics with neutrinos

Focus on origin of neutrinos and cosmic rays at highest energies

The prime candidate classes for the vs?

Neutrino telescopes are users of Fermi catalogues

Gamma-Ray Bursts (LGRBs)

Transients

(e.g. from explosion of massive star)

> High luminosity over short time

Less than ~1% of observed v flux

IceCube, Nature 484 (2012) 351; Newest update: arXiv:1702.06868

Active Galactic Nuclei (AGNs)

- Steady emission with flares
- Lower luminosity, longer duration

> Less than ~10% of observed v flux

IceCube, Astrophys. J. 835 (2017) 45 (see proceedings of ICRC 2017 for updates)

Interpretation???? Implications?

Can AGN blazars power the diffuse neutrino flux?

Neutrino multiplet constraints

Limits on source density of powerful sources by non-observation of neutrino multiplets from these (here steady sources)

Kowalski, 2014; Ahlers, Halzen, 2014; Fig. from Murase, Waxman, 2016

A simple multi-messenger toy model for the source

If neutrons can escape: Source of cosmic rays

$$n \rightarrow p + e^- + \overline{\nu}_e$$

Neutrinos produced in ratio ($v_e:v_u:v_\tau$)=(1:2:0)

 $\pi^+ \rightarrow \mu^+ + \nu_\mu$,

$$\mu^+ \to e^+ + \frac{\nu_e}{\nu_\mu} + \frac{\overline{\nu}_\mu}{\nu_\mu}$$

Cosmic messengers

 Δ -resonance approximation:

$$p + \gamma \rightarrow \Delta^+ \rightarrow$$

2) Interactions in known environments (e.g. CMB)

3) Interactions in guesstimated densities (e.g. in sources)

$$\begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases}$$

1) Generic relationships among secondaries

Levels of technical "sophistication" (no of parameters)

$$\pi^0 \rightarrow \gamma + \gamma$$

High energetic gamma-rays; typically cascade down to lower E

Generic multi-messenger relationships

Generic relationships: pp versus py interactions

(Branchings actually not exactly 1/3; see JCAP 1701 (2017) 033)

> Generic relationship (if γ -rays can escape from source)

$$E_{\gamma}^2 \Phi_{\gamma} \approx 2(E_{\nu}^2 \Phi_{\nu_i})|_{E_{\nu}=0.5E_{\gamma}}$$

pγ interactions: more sophisticated, as relativistic target

 $p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases}$ Ε-α Ε-β $E^{-\alpha+\beta-1}$ $E^{-\alpha}$ only if $\beta=1!$ Often "ad hoc" implied assumption. Not for AGN!

Seneric multi-messenger relationships more assumption-dependent (e.g. Ahlers, Gonzalez-Garcia, Halzen, Astropart. Phys. 35 (2011) 87; Murase, Guetta, Ahlers, PRL 116 (2016) 071101; ...) Walter Winter | Fermi 2017 | Oct. 15-20, 2017 | Page 12

Constraints from diffuse γ-ray background

> Limits any pp source class with a neutrino spectrum much softer than $\sim E^{-2.2}$

Murase, Ahlers, Lacki, 2013

Bechtol, Ahlers, di Mauro, Ajello, Vandenbroucke, 2017

The constraints may be even stronger if the non-blazar contribution to the extragalactic γ-ray background is small; challenges e.g. starburst galaxies as dominant neutrino sources?

 $\rm p + p \rightarrow$

Example: Neutrino production in AGN blazar flares

- Assume that 2nd peak from hadronic γ-rays
- > One neutrino event from blazar PKS B1424-418?
- Limitation: hadronic processes are sub-dominant in 2nd peak in SED for this object (self-consist. rad. model):

$$p + \gamma \rightarrow \Delta^{+} \rightarrow \begin{cases} n + \pi^{+} \\ p + \pi^{0} \end{cases} \begin{array}{c} 1/3 \text{ of all cases} \\ 2/3 \text{ of all cases} \end{cases}$$

$$2/3 \text{ of all cases} \\ 10^{49} \\ 10^{49} \\ 10^{48} \\ 10^{47} \\ 10^{47} \\ 10^{46$$

1

Multi-messenger – multi-wavelength models

Blue:

leptonic origin Red/brown: Gao, Pohl, W hadronic origin

Gao, Pohl, Winter, ApJ, 2017

1 /0

11

DESY

arXiv:1602.02012,

Nature Physics

Walter Winter | Fermi 2017 | Oct. 15-20, 2017 | Page 14

Neutrinos and the origin of cosmic rays? Example: Multi-messenger models for GRBs

Gamma-Ray Bursts (here long GRBs)

Neutrino production efficiency in GRBs ... from geometry estimators

Need photon density, which can be obtained from energy density. Rather model-independently:

$$u_{\gamma}' \equiv \int \varepsilon' N_{\gamma}'(\varepsilon') \mathrm{d}\varepsilon' = \frac{L_{\gamma} \Delta d'/c}{\Gamma^2 V_{\mathrm{iso}}'} = \frac{L_{\gamma}}{4\pi c \Gamma^2 R^2}$$

Scales ~1/R² from simple geometry arguments

 $V'_{\rm iso} = 4\pi R^2 \cdot \Delta d'$

> Internal shock scenario: e.g. Guetta et al, 2004

Magnetic re-connection models: est. for R from pulse timescale (larger)

- > *Photospheric emission*: *R* corresponds to photospheric radius
- > *Multi-zone models*: R and $\Delta d'$ individually calculated for each collision
- Production radius R and luminosity L_γ are the main control parameters for the neutrino production [t_v does not vary as much as L_γ]

Walter Winter | Fermi 2017 | Oct. 15-20, 2017 | Page 17

e.g. He et al, 2012; Zhang, Kumar, 2013; Biehl et al, arXiv:1705.08909 (Sec. 2.5) for details

Example: Expected neutrino fluence from SGRB 170817A

Biehl et al, in prep.; neutrino bounds from arXiv:1710.05839 DESY

- Expectation yields ~10⁻⁴ events for a baryonic loading (energy baryons/γ-rays in jet) ξ_A = 100 (scales with ξ_A)
- Based on Fermi-GBM SED and flux Goldstein et al, 1710.05446
- Structured jet model calculation;
 R optimistic close to photosphere ~ 10¹³ cm
 Abbott et al, ApJ 747 (2017) L13
- Uncertainty region (1σ) includes SED, break energy, z, γ-ray flux, t_v, T₉₀

GRB stacking bounds

Gamma-ray observations (e.g. Fermi, Swift, etc)

Use information on individal GRBs to compute expected neutrino fluence F

> Current result vs. one zone prediction from γ -rays: Exclude GRBs as UHECR sources? But what is exactly the required ξ_A ? NeuCosmA 2011

Fig. from update: arXiv:1702.06868

Waxman, Bahcall, 1997; Guetta et al, 2003

Expected

quasi-diffuse

flux

 $\phi \simeq -$

+100

 $\frac{1}{2} \sum \mathcal{F}_i$

Caveat 1: UHECR composition

- UHECR composition is heavy. Baryonic loading can be obtained from UHECR fit
- Need to compute the nuclear cascade in the emission zone (otherwise same logic as proton model)

Disintegration of ⁵⁶Fe *within* a GRB shell $(L_{\gamma}=10^{52} \text{ erg/s})$

Boncioli, Fedynitch, Winter, Scientific Reports, 7 (2017) 4882

Auger global fit

Walter Winter | Fermi 2017 | Oct. 15-20, 2017 | Page 20

Neutrino data constrain the prompt emission mechanism ... if GRBs are to be the sources of the UHECRs

injection into radiation zone

Walter Winter | Fermi 2017 | Oct. 15-20, 2017 | Page 21

Caveat 2: The emission comes from multiple zones

- Set out a number of shells with a (stochastic) Γ factor distribution
- Shells collide, merge and cool by radiation of energy
- Light curve predictable (see below)
- Efficient energy dissipation (e. g. into gamma-rays) requires broad Γ factor distribution

Bustamante, Baerwald/Heinze, Murase, Winter, Nature Commun. 6, 6783 (2015) + ApJ 837 (2017) 33;

based on Kobayashi, Piran, Sari, 1997; see also Globus et al, 2014+2015

Production of different messengers

- The different messengers originate from different regimes of the GRB where the photon densities are very different
- > More fundamental implications?
 - Quantities inferred from γ-ray observations not representative for neutrinos and UHECRs? Especially high-E γ-rays need low densities!
 - Neutrinos and cosmic rays come from different regions or objects? (e. g. AGNs over blazar sequence)

Consequences for neutrino production

- This model: Take observed flux as input for target photon spectrum
- Sub-photospheric contribution is an extrapolation (speculation?)
- Neutrino flux is dominated by a few collisions with high densities beyond photosphere
- Can be used to predict a "minimal" (and robust wrt. geometry estimators) superphotospheric neutrino flux → IceCube-Gen2?
 E² φ ~ 10⁻¹¹ GeV cm⁻² s⁻¹ sr⁻¹

Bustamante, Baerwald/Heinze, Murase, Winter, Nature Commun. 6, 6783 (2015) + ApJ 837 (2017) 33

Non-trivial light curves: observed vs. synthetic

Features of non-stochastic engine behavior

> There is a correlation between observation time and R_{c} :

> Consequences:

- There is an early suppression of high-E γ-ray production (which may be interpreted as delay)
- Overall neutrino production can be lower in these sources

Bustamante, Heinze, Murase, Winter, ApJ 837 (2017) 33

Multi-messenger-multi-wavelength light curves

- Delay a few seconds in Fermi-LAT, order ten seconds in CTA (similar to GRB 080916C, Abdo et al, Science, 2009)
- Neutrino emission efficiency high in suppression region + uncorrelated contributions
- Future perspectives for more sophisticated source diagnostics?

Bustamante, Heinze, Murase, Winter, ApJ 837 (2017) 33

Oct. 15-20, 2017 | Page 27

Conclusions and future prospects

- Neutrino telescopes are heavy "users" of Fermi catalogue data, such as in stacking searches
- The extragalatic background light measurements of Fermi constrain the production mechanism for neutrinos at a very fundamental level (pp vs. pγ)
- From the neutrino (and GW?) perspective, one would like to have a better understanding of the fainter parts of the source populations, since the neutrino flux may be dominated by these; prospects in Fermi? Threshold?
- The different messengers do not necessarily come from the same objects or even production regions within the same objects; sometimes there are "anti-correlations" (e.g. neutrinos – high-E gamma-rays) (see also Murase, Guetta, Ahlers, PRL 116 (2016) 071101)
- Consequence: Multi-messenger interpretations have to rely on theoretical models, which need improvement
- IceCube-Gen2 will possibly identify neutrinos from specific sources (e.g. GRBs), constrain source populations by multiplet searches, and disentangle different components (e.g. Galactic versus extragalactic) statistically
 Walter Winter | Fermi 2017 | Oct. 15-20, 2017 | Page 28