

On the Detection Potential of Short Blazar Flares for Current Neutrino Telescopes

Michael Kreter, Matthias Kadler, Felicia Krauss, Roopesh Ojha, Sara Buson, Karl Mannheim, Joern Wilms on behalf of the Fermi-LAT presentation

> 7th International Fermi Symposium 2017 October 20th, 2017

On the Detection Potential of Short Blazar Flares

BLAZARS AS PROMISING NEUTRINO SOURCES

Neutrino output of blazars estimated based on

- Mannheim 1993, A&A 269, 67–76
- Mannheim 1995, Astroparticle Physics, 3, 295

$$\begin{split} p + \textit{nucleus} &\to \pi + X \quad (\pi = \pi^{\pm}, \pi^{0}) \\ p + \gamma &\to \Delta^{+} \to \begin{cases} \pi^{0} + p \\ \pi^{+} + n. \end{cases} \end{split}$$

Resulting pions decay:

$$\begin{split} \pi^0 &\rightarrow \gamma + \gamma \\ \pi^\pm &\rightarrow \mu^\pm + \nu_\mu \ (\text{ or } \bar{\nu_\mu}) \\ \mu^+ &\rightarrow e^+ + \bar{\nu_\mu} + \nu_e \\ \mu^- &\rightarrow e^- + \nu_\mu + \bar{\nu_e} \end{split}$$

Credit: Katz & Spiering 2012

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

-

On the Detection Potential of Short Blazar Flares

COINCIDENCE OF A HIGH-FLUENCE BLAZAR OUTBURST WITH A PEV NEUTRINO EVENT

Kadler et al. 2016, Nat Phys 12, 807

 $\Rightarrow \mbox{Calorimetric Output in BigBird field dominated by} \\ PKS B1424-418 \\ \Rightarrow But: \mbox{ Chance Coincidence } \approx 5\% \\$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

On the Detection Potential of Short Blazar Flares

イロト イロト イヨト イヨト

3

Choose sources that:

- are highly variable
- show extreme bright short flares

イロト イタト イヨト イヨト 三日

- G: Flux Ground Level
- σ_{indi} : individual flux variation of each bin
- σ: Intrinsic source variation
- A_{eff}: Effective area

ON THE

DETECTION

POTENTIAL OF SHORT BLAZAR

FLARES

MOTIVATION

Choose flares that fulfill:

$$\sigma_{\mathsf{indi}} = (\mathsf{Flux} - 3 \times \mathsf{Flux} \mathsf{ err}) \times \mathsf{A}_{\mathsf{eff}} - \mathsf{G}$$

 $\sigma_{\mathsf{indi}} \ge 3 \times \sigma$

イロト イロト イヨト イヨト 三日

- G: Flux Ground Level
- σ_{indi} : individual flux variation of each bin
- σ: Intrinsic source variation
- A_{eff}: Effective area

On the Detection Potential of Short Blazar Flares Motivation Method

SUMMARY

Which flares to select?

- Start from Fermi's public bright-blazar list
- · Identify flares according to flare selection method
- Run daily 6 year (Pass 8) light curves on sources responsible for 100 brightest short flares
- Re-run flare selection method on Pass 8 light curves

 \Rightarrow Select the best 50 flares according to their fluence \Rightarrow Calculate a neutrino expectation for all 50 flares

On the Detection Potential of Short Blazar Flares

ESTIMATE MAXIMUM NEUTRINO OUTPUT Pion Photoproduction:

Maximum Neutrino Output:

$$F_{\gamma} = rac{1}{3}F_{\pi} + rac{1}{4} \cdot rac{2}{3}F_{\pi} = rac{1}{2}F_{\pi}$$

 $F_{
u} = rac{2}{3} \cdot rac{3}{4}F_{\pi} = rac{1}{2}F_{\pi}$

• See Krauss et al. 2014, A&A 566, L7

Kadler et al. 2016, Nat Phys 12, 807

Credit: Krauss et al. 2014, A&A 566, L7

 $\mathbf{N}_{\nu,\text{PeV}}^{\text{max}} = \mathbf{A}_{\text{eff},\mathbf{e}_{\nu}} \times \left(\frac{\mathbf{F}_{\gamma}}{\mathbf{E}_{\nu}}\right) \times \Delta \mathbf{t}$

-

イロト イポト イヨト イヨト

On the Detection Potential of Short Blazar Flares

ESTIMATE MAXIMUM NEUTRINO OUTPUT

Scaling Factor:

$$\mathsf{N}_{\nu,\mathsf{PeV}}^{\mathsf{pred}} = \mathfrak{f} \times \mathsf{N}_{\nu,\mathsf{PeV}}^{\mathsf{max}}$$
$$\mathfrak{f} = 0.5 \times 0.05 \approx 0.025$$

Things to consider:

- Different neutrino flavors
- UV seed photons needed (FSRQs)
- PeV peaks might be smeared out to pprox (0.03 10) PeV

 \Rightarrow See Kadler et al. 2016 for details

On the Detection Potential of Short Blazar Flares

Motivation Method Flare sample Summary

(1)

On the Detection Potential of Short Blazar Flares

- Halzen & Kheirandish 2016, ApJ. 831,12
- Suggestion of promising neutrino candidate

On the Detection Potential of Short Blazar Flares

- Halzen & Kheirandish 2016, ApJ. 831,12
- Suggestion of promising neutrino candidate
- Identify flare duration of 6 days

On the Detection Potential of Short Blazar Flares

Motivation Method Flare sample Summary

- Time resolved SED of 2015 flare
- Simultaneous Swift/XRT and Fermi/LAT observations

イロト イポト イヨト イヨト

3

イロト イポト イヨト イヨト

э

On the Detection Potential of Short Blazar Flares

- $N_{\nu, \text{PeV}}^{\text{pred}} \approx 0.02$
- pprox 5 months of non flaring activity

FLARE SAMPLE

On the Detection Potential of Short Blazar Flares

Source	Flare Number	Normalized Fluence	t _{min} in MJD	t _{max} in MJD	N_{ν}^{max}	$\mathbf{N}_{\nu}^{\mathbf{pred}} \times 10^{-2}$	Duration in Days	Normalized N_{ν}^{pred} $\times 10^{-3}$
3C 279	1	260238	57186	57192	0.797	1.99	6	3.32
PKS 1510-089	2	192902	55849	55854	0.306	0.764	5	1.53
PKS 1510-089	3	151569	55866	55877	0.586	1.46	11	1.33
PKS 1510-089	4	151262	55856	55857	0.0405	0.101	1	1.01
3C 279	5	138636	56717	56718	0.0272	0.0681	1	0.681
3C 279	6	128078	56749	56754	0.214	0.535	5	1.07
PKS 1510-089	7	125857	57241	57251	0.393	0.982	10	0.982
3C 279	8	119379.	56866	56868	0.0993	0.248	2	1.24
PKS 1510-089	9	119033	56553	56557	0.159	0.398	4	0.995
PKS 1510-089	10	116956.	55766	55768	0.0605	0.151	2	0.757
				:				
3C 454.3	38	74620	55408	55648	11.71	29.28	240	1.22

Table 1. Neutrino expectation for the 50 best ranked flares, sorted by the normalized fluence.

 50 best flares are generated by a group of only seven different sources:

3C 279, PKS 1510-089, PKS 0402-362, CTA 102, 3C 454.3, PKS 1424-418, PKS 1329-049

• 3C 279 and PKS 1510-089 responsible for 42 flares

FLARE SAMPLE

• Detection probability shows saturating tendency

- \Rightarrow Extending the sample size does not substantially increase the detection probability

ON THE

POTENTIAL OF SHORT BLAZAR FLARES

FLARE SAMPLE

TXS 0506+056

Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the IceCube-170922A error region.

ATel #10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT

Credential Certification: David J. Thompson (David J.Thompson@nasa.gov)

Subjects: Gamma Ray, Neutrinos, AGN

Referred to by ATel #: 10792, 10794, 10799, 10801, 10817, 10830, 10831

• First track like IceCube EHE event consistent with a LAT source

On the Detection Potential of Short Blazar Flares

LOTIVATION

FLARE SAMPLE

Summary

SUMMARY

- Short blazar flares yield only a small neutrino detection probability
- No substantial improvement by adding more (fainter) flares
- Top-ranked flares produced by only a handful of individual blazars

On the Detection Potential of Short Blazar Flares

On the Detection Potential of Short Blazar Flares

MOTIVATION

Method

FLARE SAMPLE

Summary

Backup

LIGHT CURVE GROUND LEVEL CALCULATION

On the Detection Potential of Short Blazar Flares

Motivation Method Flare sample

SUMMARY

LIGHT CURVE OF 3C 279

On the Detection Potential of Short Blazar Flares

LIGHT CURVE OF 3C 454.3

On the Detection Potential of Short Blazar Flares

LIGHT CURVE OF PKS 1510-089

On the Detection Potential of Short Blazar Flares

MOTIVATION

Method

Flare sample

SUMMARY

LIGHT CURVE OF CTA 102

On the Detection Potential of Short Blazar Flares

LIGHT CURVE OF PKS 0402-362

On the Detection Potential of Short Blazar Flares

LIGHT CURVE OF PKS 1329-049

On the Detection Potential of Short Blazar Flares

LIGHT CURVE OF PKS 1424-41

On the Detection Potential of Short Blazar Flares