

Search for GeV neutrinos associated with solar flares

Gwenhaël de Wasseige

for the IceCube Collaboration https://icecube.wisc.edu

IceCube Neutrino Observatory South Pole, Antarctica

Icecube

Surface

-1450m

-2450m

• 1km³ of instrumented ice

• 1.5km below the South Pole surface

• 5160 optical modules

 Modules detecting Cherenkov radiation

• Completed in 2010

Since 2013, we kept pushing the detection limits, with e.g.:

- sterile neutrino limits
- WIMP-nucleon cross section limits
- **neutrino oscillation** measurements
- multimessenger and realtime analyses

You might be thinking:

- · GeV neutrinos, where could they come from ?
- How can you even see this kind of events ?
- IceCube? Neutrino? I thought I was at Fermi Symposium

You might be thinking:

- · GeV neutrinos, where could they come from ?
- How can you even see this kind of events ?
- IceCube? Neutrino? I thought I was at Fermi Symposium

solar flarev, what?

 $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$ $\mu^{+} \rightarrow e^{+} \nu_{e} + \overline{\nu}_{\mu}$

 $\pi^{-} \rightarrow \mu^{-} + \overline{\nu}_{\mu}$ $\mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$

 $\pi^{\circ} \rightarrow 2 \gamma$

t po atm

hadron acceleration (up to several GeV)

> p,α... = Solar Energetic Particles

You might be thinking:

- Gev neutrinos, where could they come from ?
- How can you even see this kind of events ?
- IceCube? Neutrino? I thought I was at Fermi Symposium

You might be thinking:

- GeV neutrinos, where could they come from ?
- I How can you even see this kind of events ?
- IceCube? Neutrino? I thought I was at Fermi Symposium

solar flarev, what?

 $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$ $\mu^{+} \rightarrow e^{+} \nu_{e} + \overline{\nu}_{\mu}$

 $\pi \rightarrow \mu + \overline{\nu}_{\mu}$ $\mu \rightarrow e^{-} \overline{\nu}_{e} + \nu_{\mu}$

 $\pi^{\circ} \rightarrow 2 \gamma$

Po atm

hadron acceleration (up to several GeV)

> p,α... = Solar Energetic Particles

Solar flarev, how?

V

Icecube

Sun

Solar flarev, how? Icecube ソ γ Fermi

Sun

2 possible approaches:

1. Use IceCube archival data (2011-now) and study solar flares seen by Fermi-LAT

2. Trigger IceCube based on realtime Fermi observations

2 possible approaches:

- 1. Use IceCube archival data (2011-now) and study solar flares seen by Fermi-LAT
 - Mar 7th 2012
 - Feb 25th 2014
 - Sep 1st 2014
- 2. Trigger IceCube based on realtime Fermi observations

Solar flarev, how?

Fermi light curve for March 7th, 2012 Ajello et al., 2014

Fermi light curve for March 7th, 2012 Ajello et al., 2014

20 minutes

2 possible approaches:

- 1. Use IceCube archival data (2011-now) and study solar flares seen by Fermi-LAT
 - Mar 7th 2012
 - Feb 25th 2014
 - Sep 1st 2014
- 2. Trigger IceCube based on realtime Fermi observations
 - Hilspool data -> SFNews

Solar flarev, how? Sun Icecube 1/ γ Fermi

Icecube

- Sep 6th 2017 - Sep 10th 2017

1/

ariti. B 🗞 🔅

 γ

Fermi

Sun

Beam of protons:

$$F(E) = A E^{-\delta} H(E_{max} - E)$$

A and δ derived from observations

Beam of protons:

 $F(E) = A E^{-\delta} H(E_{max})$ E)

A and δ derived from observations

Take-home messages

 IceCube is sensitive to GeV neutrinos from transient sources

• Fermi is an essential partner in this search

 Together, we can constrain solar flare physics and much more!

Thanks!

Icecube

• 1km³ of instrumented ice

• 1.5km below the South Pole surface

• 5160 optical modules

 Modules detecting Cherenkov radiation

• Completed in 2010