Cosmic rays, gas, and dust in Local clouds

Quentin REMY, Isabelle GRENIER, Douglas MARSHALL, Jean-Marc CASANDJIAN, on behalf of the Fermi-LAT Collaboration

7th Fermi Symposium
19 October 2017
Total gas tracers

- γ rays of interstellar origin

\[p_{CR} + p_H \rightarrow \pi_0 \rightarrow 2\gamma \]

\[I_\gamma \propto \int n_{CR} n_H \, dl \]

- Dust thermal emission from large dust grains mixed with gas

\[I_\nu = \tau_\nu B_\nu(T) \]

Dust optical depth

\[\tau_\nu = \kappa_0 \left(\frac{\nu}{\nu_0} \right)^\beta R_{DG} \mu H N_H \]

- Extinction caused by large dust grains mixed with gas

\[A_\lambda = 1.086 \tau_\lambda^{ext} = 1.086 \int n_{dust} \sigma_\lambda^{ext} \, ds \]

Stellar reddening: \(E(B-V) = A_\nu / R_\nu \)
Objectives:

- **Modelling** diffuse \(\gamma\)-rays emission, dust optical depth, stellar reddening: linear combination of gas column density in different phases (HI, CO, DNM)
- **Test** reliability of the tracers
- **Constraints** on the gas phases and dust properties
Dust and γ-ray data jointly reveal significant amounts of gas in addition to that seen in HI and 12CO emissions.

Dark Neutral Medium (or dark gas)

DNM = dense HI + diffuse H_2
Anticenter region: 6 local clouds

6 Local clouds separated in position-velocity + Galactic background gas

Quentin REMY
Tracing gas and dust in the local interstellar medium
γ-ray and dust models

Uniform Cosmic Rays density n_{CR}, dust-to-gas ratio, grain emissivity κ_ν, extinction cross section $\sigma_\lambda^{\text{ext}}$ → $\gamma, \tau, E(B-V)$

$\sum_{\text{HI}} N_{\text{HI}}$ Cet, N$_{\text{HI}}$ TauS, N$_{\text{HI}}$ TauN, N$_{\text{HI}}$ TauM, N$_{\text{HI}}$ Cal, N$_{\text{HI}}$ Per, N$_{\text{HI}}$ Gal

$+ \sum_{\text{CO}} W_{\text{CO}}$ Cet, W$_{\text{CO}}$ TauS, W$_{\text{CO}}$ TauN, W$_{\text{CO}}$ TauM, W$_{\text{CO}}$ Cal, W$_{\text{CO}}$ Per, W$_{\text{CO}}$ Gal

$+ N_{\text{HII}}$ DNM, + COsat + non-ISM ancillary data

Quentin REMY

Tracing gas and dust in the local interstellar medium
Final dust and γ-ray models residuals

- Data - model in sigma unit:
Emissivity spectra of local clouds consistent with the local interstellar spectrum (Casandjian 15)

Local dispersion ±9% : consistent with uncertainties in N_{HI} column densities

Perseus value : no CR enhancement, cross-talk between HI and CO distributions

No energetic evolution relative to the local interstellar spectrum accross cloud phases

⇒ good CR penetration into the cloud ⇒ γ-rays OK to trace N_H
Evolution of grain emission properties

- Non-linear increase in τ_{353} with gas column density, N_H, likely due to grain evolution (coating, aggregation...)

- Better correlation of the stellar reddening caused by dust, $E(B-V)$, with gas column density, N_H
X_{CO} estimates from τ_{353} systematically larger than γ-ray and $E(B-V)$ ones. Better to rely on X_{CO} measurements from γ rays.

Preliminary data points indicate:

- TauN
- TauS
- Cal
- TauM
- Per

X_{CO} measurements with dust and γ rays

Quentin REMY

Dust emission/extinction and grains evolution
X\textsubscript{CO} environnemental changes

γ-ray measurements: \(X_{\text{CO}} = \frac{q'(\text{CO})}{2q'(\text{HI})} \)

Average \(X_{\text{CO}} \) of a cloud

Simulation: \(X_{\text{CO}} \) variations within a cloud

Larger \(X_{\text{CO}} \)

Bertram et al. 2015

Simulation:
\(X_{\text{CO}} \) decreases from cloud edge (photo-dissociated) to core (well shielded)

γ-ray measurements:
Average \(X_{\text{CO}} \) decrease from diffuse to bright and compact clouds

Consistent with \(X_{\text{CO}} \) decreases from edges to denser cores
Take away messages

- No energetic evolution relative to the local interstellar spectrum across cloud phases
 => good CR penetration into the cloud => γ-rays OK to trace N_H

- Dust optical depth τ_{353} do not linearly correlate with gas column density, N_H
 due to a chemical and/or structural change in the dust grains.

- γ-ray and dust data jointly reveal significant amounts of DNM gas in addition to that
 seen in HI, free-free, and 12CO emissions.

- Evidence for X_{CO} variations in different environments
 => importance of clouds separation

See more:
Chamaeleon clouds: *Planck & Fermi-LAT Collaborations XXVIII* (2015), A&A ... 82A..31A
Nearby Anticenter clouds: Remy et al. (2017), A&A...601A..78R
Questions or bonus slides?
Gas emission lines

- Atomic gas: HI 21cm emission line (LAB, GASS, EBHIS, HI4PI, GALFA surveys)

\[
N_H = 1.83 \times 10^{18} \text{ cm}^{-2} \quad T_S \int \ln \left(\frac{T_S}{T_S - T_b} \right) \, dv
\]

Spin temperature T_S unknown without absorption line measurement (uncertainty in dense HI)

- Molecular gas: CO (J 1-0) 2.6 mm emission line (CfA, Nanten surveys)

\[
W_{\text{CO}} = \int T_b \, dv
\]

CO to H_2 conversion factor:

\[
X_{\text{CO}} = \frac{N_{H_2}}{W_{\text{CO}}}
\]
Neutral gas phases

Anticentre region
Remy et al. (2017)

Chamaeleon region
Planck+Fermi XXVIII (2015)

Dark Neutral Medium: Opaque HI + diffuse H$_2$

Bright HI

CO-traced H$_2$

CO-saturated H$_2$
γ-ray detection of ionized gas

- γ-ray detection 10 σ, hadronic origin, not Inverse Compton
- Hα and free-free emissions model in NGC1499:
 - Mean electron density \(N_e = 5.0 \pm 1.1 \text{ cm}^{-3} \)
 - Electron temperature \(T_e = 7700 \pm 1700 \text{ K} \)
- γ-ray measurement for \(T_e = 8000 \text{ K} \):
 - \(N_e = 4.3 \pm 0.6 \text{ cm}^{-3} \)