

Cosmic rays, gas, and dust in Local clouds

Quentin REMY, Isabelle GRENIER, Douglas MARSHALL, Jean-Marc CASANDJIAN, on behalf of the *Fermi*-LAT Collaboration

7th Fermi Symposium 19 October 2017

Total gas tracers

♦ γ rays of interstellar origin Cosmic-Ray interactions with gas $p_{CR} + p_H → π_0 → 2 γ$ $I_γ α \int n_{CR} n_H dl$

 Dust thermal emission from large dust grains mixed with gas

 $I_{\nu} = \tau_{\nu} B_{\nu}(T)$ Dust optical depth $\tau_{\nu} = \kappa_0 \left(\frac{\nu}{\nu_0}\right)^{\beta} R_{\rm DG} \mu_{\rm H} N_{\rm H}$

 Extinction caused by large dust grains mixed with gas

$$A_{\lambda} = 1.086\tau_{\lambda}^{\text{ext}} = 1.086\int n_{\text{dust}}\sigma_{\lambda}^{\text{ext}} \mathrm{ds}$$

Stellar reddening: $E(B-V) = A_V / R_V$

Tracing gas and dust in the interstellar medium

Objectives:

- Modelling diffuse γ-rays emission, dust optical depth, stellar reddening : linear commination of gas colum density in different phases (HI, CO, DNM)
- Test reliability of the tracers
- Constraints on the gas phases and dust properties

Anticenter region : 6 local clouds

6 Local clouds separated in position-velocity + Galactic background gas

γ-ray and dust models

Uniform Cosmic Rays density n_{CR} , dust-to-gas ratio, grain emissivity $\kappa_{v_{L}}$ extinction cross section σ_{λ}^{ext}

► N_{HII} ← Osat non-ISM ancillary data

Quentin REMY

Tracing gas and dust in the local interstellar medium

Final dust and y-ray models residuals

Data - model in sigma unit:

Local HI γ-ray emissivity

Emissivity spectra of local clouds consistent with the local interstellar spectrum (Casandjian 15)

- Local dispersion ±9% : consistent with uncertainties in N_H column densities
- Perseus value : no CR enhancement, cross-talk between HI and CO distributions
- No energetic evolution relative to the local interstellar spectrum accros cloud phases
 => good CR penetration into the cloud => γ-rays OK to trace N_H

Evolution of grain emission properties

X_{CO} measurements with dust and γ rays

 X_{co} estimates from τ₃₅₃ systematically larger than γ-ray and E(B-V) ones Better to rely on X_{co} measurements from γ rays

Quentin REMY

X_{co} environnemental changes

γ-ray measurements: $X_{CO} = q^{\gamma}(CO) / 2q^{\gamma}(HI)$ Average X_{CO} of a cloud

No energetic evolution relative to the local interstellar spectrum accros cloud phases
 => good CR penetration into the cloud => γ-rays OK to trace N_H

- * Dust optical depth $τ_{353}$ do not linearly correlate with gas column density, N_H due to a chemical and/or structural change in the dust grains.
- γ-ray and dust data jointly reveal significant amounts of DNM gas in addition to that seen in HI, free-free, and ¹²CO emissions.
- Evidence for X_{co} variations in different environmement
 => importance of clouds separation

See more :

Chamaeleon clouds : *Planck* & *Fermi*-LAT Collaborations XXVIII (2015), A&A ... 82A..31A Nearby Anticenter clouds: Remy et al. (2017), A&A...601A..78R

Questions or bonus slides ?

Gas emission lines

Atomic gas : HI 21cm emission line
 (LAB, GASS, EBHIS, HI4PI, GALFA surveys)

$$N_{\rm H} = 1.83 \times 10^{18} \ {\rm cm}^{-2} \ {\rm T}_{\rm S} \int {\rm ln} \left(\frac{{\rm T}_{\rm S}}{{\rm T}_{\rm S} - {\rm T}_{\rm b}} \right) {\rm dv}$$

Spin temperature T_s unknown without absorption line measurement (uncertainty in dense HI)

Molecular gas : CO (J 1-0) 2.6 mm emission line (CfA, Nanten surveys)

$$W_{\rm CO} = \int T_b \, dv$$

CO to H₂ conversion factor :

$$X_{\rm CO} = \frac{N_{\rm H_2}}{W_{\rm CO}}$$

CfA survey Dame et al. 2001

Neutral gas phases

γ-ray detection of ionized gas

* γ-ray detection 10 σ, hadronic origin, not Inverse Compton

 Hα and free-free emissions model in NGC1499: Mean electron density $N_e = 5.0 \pm 1.1 \text{ cm}^{-3}$ Electron temperature
T_e = 7700 \pm 1700 K

γ-ray measurement for $T_e = 8000$ K : $N_e = 4.3 \pm 0.6$ cm⁻³

