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Role of the Galactic Diffuse Emission Model

• For source detection and characterization in gamma-ray data 
we want to model as accurately as possible everything other 
than the sources

• The Milky Way is rather bright in ~GeV gamma rays
– ~65% of the celestial gamma rays detected by the LAT 

originate in diffuse processes in the Milky Way 
– ~25% is isotropic extragalactic background
– ~10% is resolved into point and small extended sources

• Especially on the faint end of the source distribution (where 
most of the sources are), an accurate foreground model will 
result in a deeper, more accurate and reliable catalog
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* Other diffuse components include residual charged-particle background, residual Earth 
limb emission, and the effectively diffuse emission from the moving quiet Sun and Moon.  
I will not say any more about these except that they have been updated



Motivations for a New Galactic Diffuse Emission 
Model

• See talk by Jean Ballet this afternoon
• The model used for the 3FGL catalog 

(and current analyses) has known 
shortcomings that can be addressed 
with new multiwavelength data
– Improving the accuracy (reducing 

systematic uncertainties) is 
possible

• The 3FGL-era model* was based on half 
of the current data set, and the event-
level analysis has since been updated 
as well (Pass 8)
– Effectively the model itself needs to 

be deeper now, continuing a trend
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*Acero et al. (2016, ApJS 223, 26)
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Modeling Diffuse Emission is Simple

• In Concept
– The Milky Way produces cosmic rays and they diffuse 

around the Galaxy, largely confined
– It also has an extensive interstellar medium (ISM, primarily 

atomic and molecular hydrogen) and stars and dust 
providing an interstellar radiation field

• The ISM is optically thin to cosmic rays and to gamma rays 
produced in cosmic ray interactions
– Production processes:  p0 decay, Brems., IC scattering

• So the radiation transfer calculation is easy
– Everything is linear
– All you need to know are the distributions of gas, 

interstellar radiation, and cosmic rays*
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* With the LAT we learned from the the Fermi bubbles that the cosmic-ray 
intensity cannot always be considered a scale factor to be fit



Updating the Model

• The potential improvements are largely related to the gas and 
radiation field distributions

• Cosmic rays are assumed to be more smoothly distributed 
than the ISM and radiation field and their intensities can be fit 
as (energy-dependent) scale factors
– Aside on Galactic rotation and ‘rings’
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H I Rings

• Other important differences:  
– Line profiles are now fit to the spectra and the inferred 

column density for each profile is assigned entirely to the 
ring at the central velocity

• Method extends closer to the GC and anticenter than the 
channel-by-channel approach

– Interpolation across the center and anticenter is now based 
on models for the disk and halo components of gas density

• Including warp and flare of the outer disk
• Kalberla & Dedes (2008), Marasco & Fraternali (2010)
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4-year model 
(3FGL)

8-year model
(4FGL)

H I Survey LAB HI4PI
Angular resolution 42’ 16’
Rotation curve Clemens (1985) Sofue (2015)



H I Rings

• Many other details including 
forbidden velocities, high-
velocity clouds, & Local 
Group galaxies

• Issues:  Optical depth 
correction is still for fixed 
Tspin = 150 K, and self 
absorption is not treated
– Dark gas derivation can 

compensate the column 
density changes 
somewhat
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Example N(H I) rings

R = 12-15 kpc

(N.B.: longitude ranges are different, and aspct
ratios are not 1:1)

R = 5-6 kpc



CO Rings
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Example W(CO) ring

N.B.: Aspect ratio is not 1:1

• Surrogate for H2.  Same dataset as for 
the 4-year model (primarily CfA CO 
survey)

• Now with the updated ring 
decomposition and particular 
improvements in the inner Galaxy
– The CMZ range is factored into 

separate rings, where the 
N(H2)/W(CO) relation is distinctly 
different

– The 3 kpc arm (largely at forbidden 
velocities) is folded into the R = 2-3 
kpc ring

• HI and CO rings:  Remy et al. in prep.

R = 5-6 kpc



Dark Gas

• Atomic and molecular gas that is not properly traced by the 
above-mentioned surveys (optically-thick H I or CO-dark H2)

• Other important developments since the 4-year model:
– Availability of Planck microwave survey (R2.00)
– Recognition of the nonlinearity of t353-N(H) relation*
– Incorporation of gradients of this relation across the Galaxy
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* See following talk by Q. Remy

4-year model 
(3FGL)

8-year model
(4FGL)

Dust tracer SFD E(B-V) 
(IRAS + COBE)

Planck t353

Angular resolution ~45' (DIRBE) 6’



Dark Gas
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Maps for |b| < 20 deg, same (sqrt) scaling

• The dark gas is responsible for a lot of the small-scale 
structure in the ISM (and gamma-ray sky)

• With the new data and approach artificial structure around 
massive star-forming regions is also greatly improved



Interstellar Radiation Field

• The IC component is derived from a 
model of the ISRF based on stellar 
population models, dust distribution 
and properties, the CMB, a cosmic-
ray electron distribution calculated 
in a GALPROP* cosmic-ray 
propagation model
– The ISRF model is 2-dimensional 

spatially**
• For the new model we factored the IC 

emission into Galactocentric rings 
(like the gas) and these are scaled 
independently
– This approach and the particular 

model*** were applied in Ajello et 
al. (2016, ApJ, 819, 44)
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* http://galprop.stanford.edu.    ** see talk by T. Porter for recent work on a 3-d ISRF model
*** LRYusifovXCO5z6R30_Ts150_mag2

Example ring, Model IC 
Intensity, 1.16 GeV

R = 6-7 kpc



Other Templates

• Testing three models for Loop I -
>100 deg diameter long known in 
non-thermal emission in the radio
– Proportional to 408 MHz radio 

continuum
– Analytical model of Wolleben et 

al. (2005)
– Soft-spectrum gamma-ray 

component of Ackermann et al. 
(2017) [so a ‘non-template 
template’]
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Loop I Models



Other Templates:  Unresolved Sources

• Combining a population model* with 8-year sensitivity map to 
make a template out of sub-threshold sources

• At low latitudes the spatial distribution is strongly modified by 
the sensitivity map
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* Luminosity function + assumed Galactic disk spatial distribution; 
see Appendix of 3FGL paper (Acero et al. 2015, ApJS, 218, 23)

One Unresolved Source Template Longitude profile at b = 0



Fitting Approach

• Maximum likelihood analysis optimized for all-sky studies:  
Gardian*, developed by G. Johannesson
– Actually a summed likelihood analysis because the PSF 

event type and zenith angle limits depend on energy in the 
4FGL data set

• We run it with the interim 8-year source list converted to a 
‘template’ with fixed scaling

• The templates are all effectively three dimensional, i.e., spatial 
maps of intensity in planes for different energies
– Gardian optimizes the parameters of scaling functions for 

each template (from proportionality to logParabola)
• Maximizing likelihood is a many parameter optimization

– We fit in sequence: high latitude, outer Galaxy, inner Galaxy 
– Monitoring parameter covariance can help diagnose 

correspondences between templates
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* Described in Ackermann et al. (2012, ApJ, 750, 30)



Non-template Templates

• The Fermi bubbles are the primary 
example
– Fermi bubbles are still there…

• For the 4-year (3FGL model) 
additional, softer-spectrum residuals 
were found over a larger area
– These were filtered (for sources), 

folded back in to the model fitting 
as templates (to un-bias the fits of 
the other components) and re-fit

• We are still assessing the required 
level of these additional, non-
template components
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1st Iteration Fermi Bubbles Template
(from 10-100 GeV residuals)



Example Assembled Galactic Diffuse Emission 
Model

• This model included the Wolleben et al. Loop I template, the 
first version of the Fermi bubbles template, and tested the 
unresolved source template (which was not detected)

• The residuals do not look flat yet at all energies, and some 
improvements in the procedure (e.g., for dealing with 
correlated templates and the brightest point sources) are 
underway
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log scale linear scale
counts per 
~0.2 deg pixel



Conclusions

• The size and quality of the LAT data set require an updated 
model for Galactic diffuse gamma-ray emission

• The recent availability of improved tracers of the interstellar 
medium and advances in our approaches to using them is 
yielding a Galactic diffuse emission model for the 4FGL 
catalog analysis
– In cases where viable alternative templates exist (e.g., 

Loop I), we are exploring to find the best performing
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