

7th Fermi Symposium

Study of UGRB spatial anisotropy with P8 data

Michela Negro* on behalf of *Fermi*-LAT collaboration

with

Nicolao Fornengo* Marco Regis*

October 19th 2017

- * 1-point photon count probability distribution of the UGRB
- X-correlation:
 - UGRB galaxies (See poster by Simone Ammazzalorso)
 - UGRB galaxy clusters
 - UGRB weak lensing of cosmic shear
 - UGRB gravitational lensing of the cosmic microwave background

2

ermi

arXiv:1410.3696 [astro-ph.HE] arXiv:1501.05301 [astro-ph.HE] 86 (2015), arXiv:1701.06988v1 [astro-ph.HE] 799, (2015)Astrophys. 800 (Fermi Astrophys. (2017), a et . Ackermann e . Ajello et al., / Ando et al., (;

ΣΞσ

7 7

DATA SELECTION

Our selection:

- * 8 years, Pass 8
- Event class: ULTRACLEANVETO (UCV)
- * Event type:
 - # PSF3 below 1 GeV
 - # PSF1+PSF2+PSF3 above 1 GeV

Previous work [1]:

⋕ 5 years, Pass 7 REP

Event class: ULTRACLEAN

***** Event type:

FRONT

Energy range: 0.5 - 500 GeV

Ξ

- 7th Fermi Symposium

Michela Negro

MASK (Φ, Ε)

- |b| < 30 deg
- **3FGL**^[1] point-like and extended sources

POINT SOURCE MASK

Circular region with **flux (Φ)** and **energy (E)** dependent radius:

#2 x PSF(E) @ Φ_{min}
#5 x PSF(E) @ Φ_{max}
#Varying logarithmically with Φ

EXTENDED SOURCE MASK

Circular region with radius:

10x PSF(E) for CenA and LMC # 5 x PSF(E) for all the others

- 7th Fermi Symposium

Michela Negro

ermi

(Fermi-LAT coll.) (2016) arXiv:1602.07246v1 [astro-ph.HE] tp.fr/users/hivon/software/PolSpice/

arXiv:1608.07289 [astro-ph.HE]

(2016),

 \overline{O}

FROM APS TO C_P(E) - 1

Hp: anisotropy dominated by shot noise of point-like sources -> random distribution -> flat APS

Michela Negro - 7th Fermi Symposium

sermi

INFN

FROM APS TO $C_P(E) - 2$

For each energy bin we define the range of multipoles to fit

Residual foreground contamination PSF correction can be inaccurate $R(l_{max}) = \frac{\Delta C_l(l_{max})}{C_P^{l_{max}}} > 1$ 4.79 - 8.32 GeV le-18 2 $\Delta C_l = \sqrt{\frac{2}{(2l+1)f_{sky}}} \left(C_l + \frac{C_N}{W_l^2}\right)$ $C_{sig,I}$ PSF 1+2+3 1.00 - 1.74 GeV PRELIMINARY — 1.74 - 2.75 GeV -2 ------ 2.75 - 4.79 GeV PRELIMINARY ----- 4.79 - 8.32 GeV 10³ w/o foreground subtraction -3 -8.32 - 14.45 GeV + w/ foreground subtraction 10¹ 10² 103 $R = \Delta C_l / C_{sig,1}$ 10² $\ell_{min} = 50$ ^[1] $\ell_{max}(E)$ 10¹ 100

7

10²

al. (2016), arXiv:1608.07289 [astro-ph.HE]. [1] M. Fornasa et

Michela Negro - 7th Fermi Symposium

@ LOW-MULTIPOLES

@ HIGH-MULTIPOLES

10³

INFN

ANISOTROPY ENERGY SPECTRUM

Gamma ray Space Telescope

FIT OF AUTO-CORRELATION ENERGY SPECTRUM

Michela Negro - 7th Fermi Symposium

CROSS-CORRELATION in ENERGY BINS

CROSS-CORRELATION COEFFICIENT^[1]

10⁰

10¹

Energy [GeV]

10²

10³

... unless due to threshold dependent effects... 10

- 1.0

- 0.5

0.0

-0.5

 r_{ij}

SOURCE CATALOG DEPENDENCE

ANISOTROPY ENERGY SPECTRUM CHANGES BY CHANGING THE MASKED SOURCE CATALOG

3FGL VS 3FHL^[1] @ E > 10 GeV

3FGL VS ~4FGL^[2]

101

Energy [GeV]

PRELIMINARY

10²

10³

11

The physical interpretation is not trivial!

$$T_p = \int_0^{S_{max}} (1 - \omega(S')) S'^2 \frac{dN}{dS'} dS'$$

Need to know the detection efficiency of the instrument for the catalog used, possibly in each energy bin.

Future plans:

produce "custom catalogs" in different energy bins (Fermi Tools) and estimate the detection efficiency via simulations

3FGL VS Custom Src List^[3] in 5 E bins

(Fermi-LAT coll.) (2017), arXiv: 1501.02003v3 [astro-ph.HE] - 7th Fermi Symposium Michela Negro et al. Ajello (2 3 7 7

10⁻¹

10-17

10-18

10-19

M. Fornasa et al. 2016

UCV PSF3 - 3FGL mask

UCV PSF1+2+3 - 3FGL mask

100

UCV PSF3 - preliminary 4FGL mask

UCV PSF1+2+3 - preliminary 4FGL mask

 $^{-4}$ S $^{-2}$ Sr $^{-2}$ Sr]

 $E^4/\Delta E^2 \cdot C_P$ [GeV²cm⁻

of Mattia Di Mauro

Courtesy

SUMMARY & CONCLUSIONS

Analysis aspects:

- ***** General improvement of data with Pass 8:
 - * more statistics,
 - * cleaner data selection and
 - * PSF types
- # Energy-dependent analysis: Masks, multipole range

* APS and X-corr suggest multiple populations of unresolved sources, but interpretation needs more studies

Assess APS dependance on point source catalog that is masked and its detection efficiency

SPECIAL ACKNOWLEDGMENTS

Doc. Luca Latronico

Prof.s Nicolao Fornengo and Marco Regis

Fermi-LAT Collaboration

THANK YOU FOR YOUR ATTENTION!

Ε

WINDOW FUNCTIONS

 $W_l = W_l^{beam} \cdot W_l^{pix}$

PIXEL WINDOW FUNCTION: RESOLUTION CORRECTION ~ 1 for order 9 maps

BEAM WINDOW FUNCTION: PSF CORRECTION

$$W_l^{beam}(E) = 2\pi \int_{\theta_{min}}^{\theta_{max}} P_l(\cos\theta) PSF(\theta; E) \sin\theta d\theta$$

$$\langle W_l \rangle = \frac{\int_{E_{min}}^{E_{max}} W_l(E) \frac{dN}{dE} dE}{\int_{E_{min}}^{E_{max}} \frac{dN}{dE} dE} \quad \text{dN/dE} \sim \text{E-2.3}$$

PSF 3 1.0 PRELIMINARY $1.1 \cdot 10^{5}$ - 0.6 1.9.10⁴ Energy $_{am}(l)$ 0.4 M 3.4-10³ 5.8·10² - 0.2 1.10² 1000 1200 1400 0 200 400 600 800

FOREGROUND SUBTRACTION

Galactic diffuse emission model: gll_iem_v6.fits

$$\Phi_{data} = N\Phi_{model} + C$$

$$log(L) = \sum_{\substack{i^{th}_{pixel}}} D_i log(F_i) - F_i - log(D_i!)^{[1]}$$

$$F_i = N\Phi_{fore} + C$$

Energy [MeV]

pixels outside the mask

[1] F. Acero et al. (Fermi-LAT coll.) (2016) arXiv:1602.07246v1 [astro-ph.HE]

Pass 8 PSF 68% cont. [1]

[1] SITO LAT PERFORMANCES

sermi

INFN