Minimal Model for Cosmic Rays and Neutrinos

. Michael Kachelrieß

NTNU, Trondheim

(No) Poster: Cosmic Ray Signatures of a Local SourceSingle solution to all anomalies in Galacic CR observations?

• amplitude dipole anisotropy $\delta \sim \text{const.}$ at 1–30 TV: $\delta = 3R/T$

- Single solution to all anomalies in Galacic CR observations?
 - \blacktriangleright amplitude dipole anisotropy $\delta \sim {\rm const.}$ at 1–30 TV: $\delta = 3R/T$
 - positron and antiproton fluxes show an excess, repeat the spectral shape of the proton flux:

Single solution to all anomalies in Galacic CR observations?

- ▶ amplitude dipole anisotropy $\delta \sim \text{const.}$ at 1–30 TV: $\delta = 3R/T$
- positron and antiproton fluxes show an excess, repeat the spectral shape of the proton flux: scale invariance + young source + constant grammage

1 E N 1 E N

Single solution to all anomalies in Galacic CR observations?

- amplitude dipole anisotropy $\delta \sim {\rm const.}$ at 1–30 TV: $\delta = 3R/T$
- positron and antiproton fluxes show an excess, repeat the spectral shape of the proton flux:
- ▶ slopes of the spectra dN_i/dR of different nuclei differ, with breaks

Single solution to all anomalies in Galacic CR observations?

- ▶ amplitude dipole anisotropy $\delta \sim \text{const.}$ at 1–30 TV: $\delta = 3R/T$
- positron and antiproton fluxes show an excess, repeat the spectral shape of the proton flux:
- ▶ slopes of the spectra dN_i/dR of different nuclei differ, with breaks

Single solution to all anomalies in Galacic CR observations?

- amplitude dipole anisotropy $\delta \sim \text{const.}$ at 1–30 TV: $\delta = 3R/T$
- positron and antiproton fluxes show an excess, repeat the spectral shape of the proton flux:
- ► slopes of the spectre dM /dD of different nuclei differ, with breaks

Outline of the talk

Introduction

- CR– γ – ν connection
- elmag. cascades
- CR composition
- constraints & wishes
- Escape model for Galactic CRs
 - main properties
 - neutrinos from starburst galaxies
- Minimal model for UHECRs and neutrinos

Our aim:

is a single source class responsible for extragalactic CRs, neutrinos and photons?

4 1 1 4 1 1 1

Outline of the talk

- Introduction
 - CR– γ – ν connection
 - elmag. cascades
 - CR composition
 - constraints & wishes
- Escape model for Galactic CRs
 - main properties
 - neutrinos from starburst galaxies
- Minimal model for UHECRs and neutrinos

Our aim:

is a single source class responsible for extragalactic CRs, neutrinos and photons?

Sconclusion: maybe, for UHECRs and neutrinos.

Composition of CRs: Auger

[arXiv:1409.5083]

Minimal Models

- 3

Composition of CRs: Auger

[arXiv:1409.5083]

composition $6 \times 10^{17} - 5 \times 10^{18} \,\mathrm{eV}$ consistent with

50% p, 50% He+N, < 20%Fe

Composition of CRs: Auger

[arXiv:1409.5083]

composition $6\times 10^{17}-5\times 10^{18}\,{\rm eV}$ consistent with

- 50% p, 50% He+N, < 20%Fe
- early transition from Galactic to extragalactic CRs

Transition to extragalactic CRs - anisotropy limits

Transition to extragalactic CRs - anisotropy limits

dominant light Galactic composition around $E = 10^{18} \,\mathrm{eV}$ excluded

[Giacinti, MK, Semikoz, Sigl ('12), PAO '13]

Effect of heavier nuclei

- models reproducing UHECR composition
 - neutrino flux $I_{\nu}(E) \propto A^{1-\alpha}I_p(E)$

3

∃ → (∃ →

Effect of heavier nuclei

- models reproducing UHECR composition
 - neutrino flux $I_{\nu}(E) \propto A^{1-\alpha}I_p(E)$
 - Peter's cycle: $E_{\max,A} = ZE_{\max,p}$
 - require threshold \Rightarrow based on $A\gamma$ interactions

E N 4 E N

Effect of heavier nuclei

- models reproducing UHECR composition
 - neutrino flux $I_{\nu}(E) \propto A^{1-\alpha}I_p(E)$
 - Peter's cycle: $E_{\max,A} = ZE_{\max,p}$
 - \blacktriangleright require threshold \Rightarrow based on $A\gamma$ interactions
- $\Rightarrow \nu$ flux is too small, at too high E

ν and mixed composition

[e.g. Unger, Farrar, Anchordoqui '15]

IceCube searches for sources: transient sources

IceCube searches for sources: stationary sources

Development of the elmag. cascade:

Cascade limit: $\alpha = 2.1$

3

< 回 > < 三 > < 三 >

Cascade limit: $\alpha = 2.3$

3

< 回 > < 三 > < 三 >

Cascade limit: $\alpha = 2.5$

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Blazars as neutrino sources?

• (unresolved) blazars dominate HE part of EGRB

3

3 > 4 3

Blazars as neutrino sources?

- (unresolved) blazars dominate HE part of EGRB
- stacked analysis of gamma-ray and muon neutrino flux from blazars
- \Rightarrow disfavors blazars as HE neutrino source

[IceCube '16, A.Neronov, D.V.Semikoz, K.Ptitsyna '16]

Blazars as neutrino sources?

- (unresolved) blazars dominate HE part of EGRB
- stacked analysis of gamma-ray and muon neutrino flux from blazars
- \Rightarrow disfavors blazars as HE neutrino source

[IceCube '16, A.Neronov, D.V.Semikoz, K.Ptitsyna '16]

- leptonic blazar models favored to explain EGRB
- neutrino sources should give sub-dominant contribution to EGRB

Constraints on a minimal model:

a single source class that

- fits the extragalactic UHECR flux and composition
- fits the (extragalactic) neutrino flux

Constraints on a minimal model:

- a single source class that
 - fits the extragalactic UHECR flux and composition
 - fits the (extragalactic) neutrino flux
 - gives subdominant contribution to EGRB
 - consistent with early Galactic to extragalactic transition
 - \Rightarrow ankle has to be a feature of source spectrum

Escape model for Galactic cosmic rays

- reproduces fluxes of individual CR groups
- explains dipole anisotropy
- fixes extragalactic flux: $F^i_{exgal}(E) = F^i_{obs}(E) F^i_{gal}(E)$

Escape model for Galactic cosmic rays

- reproduces fluxes of individual CR groups
- explains dipole anisotropy
- fixes extragalactic flux: $F^i_{exgal}(E) = F^i_{obs}(E) F^i_{gal}(E)$
- escape model applies also to other normal galaxies as starburst galaxies:
 - magnetic fields factor 100 higher:
 - if knee is caused by
 - $\star\,$ diffusion: $E_{\rm cr}\sim B$, neutrino knee at few $\times 10^{16}\,{\rm eV}$

Escape model for Galactic cosmic rays

- reproduces fluxes of individual CR groups
- explains dipole anisotropy
- fixes extragalactic flux: $F^i_{exgal}(E) = F^i_{obs}(E) F^i_{gal}(E)$
- escape model applies also to other normal galaxies as starburst galaxies:
 - magnetic fields factor 100 higher:
 - if knee is caused by
 - \star diffusion: $E_{
 m cr} \sim B$, neutrino knee at few $imes 10^{16} \, {
 m eV}$
 - ***** source: $E_{\rm max} \sim B_{\rm CR}$, neutrino knee at few $\times 10^{14} \, {\rm eV}$

Normal and starburst galaxies:

- assume $E^{-2.2}$ source spectrum
- normalisation from escape model
- starburst: $B \sim 100 B_{MW} \Rightarrow$ rescale grammage and E_{max}
- fix Q_{CR} via SN/star formation rate
- vary gas density

3

A B M A B M

Normal and starburst galaxies:

[Giacinti, MK, Kalashev, Neronov, Semikoz '15]

Normal and starburst galaxies:

[Giacinti, MK, Kalashev, Neronov, Semikoz '15]

- can not explain exgal. protons
- sources can not be dominant sources of both EGRB and neutrinos

Source model:

• 3 zones

- core: rigidity dependent acceleration $dN/dR \propto R^{-\alpha} \exp(-R/R_{\rm max})$
- inner zone: $A\gamma$ interactions
- outer zone: Ap interactions
- \bullet diffusion: increase of effective τ_{int}
- source evolution
 - BL Lac \simeq peaked at late times
 - AGN \simeq peaked at early times

Source model:

- 3 zones
 - core: rigidity dependent acceleration $dN/dR \propto R^{-\alpha} \exp(-R/R_{\rm max})$
 - inner zone: $A\gamma$ interactions
 - outer zone: Ap interactions
- diffusion: increase of effective τ_{int}
- source evolution
 - BL Lac \simeq peaked at late times
 - AGN \simeq peaked at early times

Source model:

- 3 zones
 - core: rigidity dependent acceleration $dN/dR \propto R^{-\alpha} \exp(-R/R_{\rm max})$
 - inner zone: $A\gamma$ interactions
 - outer zone: Ap interactions
- diffusion: increase of effective $\tau_{\rm int}$
- source evolution
 - ▶ BL Lac ≃ peaked at late times
 - AGN \simeq peaked at early times

Late evol., only interactions on gas: $\alpha = 1.8$, $\tau_0^{pp} = 0.035$ at $E_0 = 10^{19} \text{ eV}$

[MK, Kalashev, Ostapchenko, Semikoz '17]

Late evol., only interactions on gas: $\alpha = 1.8$, $\tau_0^{pp} = 0.035$ at $E_0 = 10^{19} \text{ eV}$

Michael Kachelrieß (NTNU Trondheim)

Fermi Symposium 10/17 17 / 19

Late evol., only interactions on gas: $\alpha = 1.8$, $\tau_0^{pp} = 0.035$ at $E_0 = 10^{19} \text{ eV}$

Michael Kachelrieß (NTNU Trondheim)

Fermi Symposium 10/17 17 / 19

AGN evol., gas and photons: $\alpha = 1.5$, $\tau_0^{pp} = 0.035$ and $\tau_0^{p\gamma} = 0.29$

[MK, Kalashev, Ostapchenko, Semikoz '17]

AGN evol., gas and photons: $\alpha = 1.5$, $\tau_0^{pp} = 0.035$ and $\tau_0^{p\gamma} = 0.29$

Michael Kachelrieß (NTNU Trondheim)

Fermi Symposium 10/17 18 / 19

AGN evol., gas and photons: $\alpha = 1.5$, $\tau_0^{pp} = 0.035$ and $\tau_0^{p\gamma} = 0.29$

Summary

- EGRB constrains stronly neutrino sources:
 - slope of extragal. neutrino $\alpha \lesssim 2.3$
 - neutrino sources are not main source class of EGRB
- eutrino signal in IceCube:
 - isotropy favours dominant extragalactic origin above 10–100 TeV
 - steeper additional contribution dominating at low energies (?)
- Sommon source class for UHECRs and neutrinos?
 - several candidates as GRBs are already disfavoured
 - (subclasses of) AGNs remain attractive option
 - ► large neutrino flux at "low" energies requires Ap interactions
 - UHECR composition favours nuclei with $A\gamma$
 - sources with both Ap and $A\gamma$ interactions needed