Evidence for CR escape: γ-Cygni
the GeV to TeV Morphology
with
MAGIC and Fermi-LAT

Marcel C. Strzysa

G. Morlinob, I. Vovka, C. Frucka, S. Masudac and T. Saitoc

for the MAGIC Collaboration

a) Max Planck Institute for Physics, Germany
b) Gran Sasso Science Institute, Italy
c) Kyoto University, Japan

Fermi Symposium 2017
Garmisch-Partenkirchen, 18th Oct. 2017
Gamma-ray supernova remnants

- π^0 Cutoff → Evidence for hadronic CRs
- Interaction region bright
- Matured SNRs ($\approx 10^4$ yrs)

- Shell bright
- Leptonic / hadronic?
 - $\approx 1-5 \times 10^3$ yrs
Age: 5 – 10 kyr

SNR clearly in Sedov phase: → reverse shock hit centre 1.5 kyr ago [Hui+‘14]

Remnant of a core-collapse SN (PSR at the centre)

Distance: 1.5 – 2.6 kpc

Extend: $\approx 0.56^\circ$ radius, (≈ 17 pc at 1.7 kpc)
\(\gamma\)-Cygni in \(\gamma\)-rays

- Detected at TeV by VERITAS using 21 h obs. time
 - extended emission (\(\sigma=0.23^\circ\)) towards north-west
 - power-law spectrum (\(\Gamma=2.37\pm/-0.14\))
 - integral flux 3% Crab Units

- \textit{Fermi}-LAT observes emission all over shell at GeV energies

- < 10 GeV emission dominated by PSR J2021+4026
 - only known \(\gamma\)-ray variable PSR
Situated at the Observatorio Roque de los Muchachos @ 2200 m a.s.l.

Stereo system of 2 x 17m telescopes

Energy range from 50 GeV – 50 TeV

Obs. time 80 h

Data selection: aerosol transmission (>80%) measured with LIDAR system
Extended, multi-component source in the north-west of SNR

Emission can be well described by multiple component model:

- Disk matching radio shell
- Extended Gaussian source
- Arc structure outside shell

Simultaneous 2D-Likelihood fit with novel SkyPrism program (inspired by Fermi-tools)

- $6.2 \, \sigma$ for disk
- $13.7 \, \sigma$ for Gaussian
- $7.4 \, \sigma$ for arc

◆ : PSR 2021+4026
★ : Sadr (mag. 2.2)
─ : 408 MHz Cont. (CGPS)
Energy dependent morphology

- > 50 GeV emission concentrated towards northwest, compare [Fraija+’16]
- > 450 GeV emission outside shell
Likelihood fit of several components (Disk + Gaussian + Arc)

Fermi and MAGIC results of the disk match

Gaussian source needs to have flatter spectrum if MAGIC and Fermi see same source [Fraija+16]

Arc seen by MAGIC only → more peaked spectrum than the other components
Shock precursor or CR escape?

- Emission outside shell suggests CR escape or precursor scenario

Precursor scenario

- Spectrum at the arc should be harder than the one of the disk

- Diffusion coefficient based on size of the Arc ($\sim 0.15^\circ \triangleq 30\% R_{\text{SNR}}$, 5pc at 1.7kpc)

 $\lambda_p = D/u_{\text{sh}}$ leads to acceleration time of $\sim 4 \times 10^4$ yrs ($5 \times t_{\text{SNR}}$)

- Unlikely that we see the shock precursor
Escape scenarios of γ-Cygni

Damping of magn. waves
(due to e.g. ion-neutral friction)

- Also low energy CR should escape
- Disagrees with Fermi observations

\[l_{\text{diff}} = \sqrt{4Dt} \]
\[\Leftrightarrow D = \frac{l_{\text{diff}}^2}{4t} \approx \frac{(R_{\text{SNR}}+\Delta_{\text{arch}}-R_{\text{ST}})^2}{4(t_{\text{SNR}}-t_{\text{ST}})} \]
\[= 2.8 \times 10^{26} \text{ cm}^2 \text{ s}^{-1} \]

\((n_0 = 0.3 \text{ cm}^3, T_{\text{SNR}} = 8 \text{ kyr}, E_{\text{SN}} = 10^{51} \text{ ergs}, M_{\text{ej}} = 10 M_{\odot})\)

- 280 times lower than average \(D_{\text{gal}} \) (20 TeV)

\[D_{\text{gal}} = 3 \times 10^{28} \left(\frac{E}{\text{GeV}} \right)^{\frac{1}{3}} \text{ cm}^2 \text{ s}^{-1} = 8 \times 10^{29} \left(\frac{E}{20 \text{ TeV}} \right)^{\frac{1}{3}} \text{ cm}^2 \text{ s}^{-1} \]

- Compatible with CR amplifying local turbulences e.g. [Malkov+13] [Nava+16]

- Turbulences locally enhanced by other mechanisms (Cygnus Cocoon)

- Projection effects may effect size of the arc (factor 2x → D increases by ~1.7)
ISM around the SNR

- Soft X-rays show shock heated gas in north → denser medium, but no Maser found
- AGN close to SNR, but no counterpart where TeV emission is found
- CO emission next to MAGIC emission region
- Hint for a HI shell surrounding the SNR, cavity wall created by progenitor [Ladouceur+'08]
Summary

- MAGIC observations revealed multi-component morphology

- Energy dependent morphology:
 - LE confined in shell
 - HE extending beyond

- Evidence for CR escape
 - diffusive escape
 - diff. coefficient lower than D_{gal}

- Synergy between IACT and Fermi
 - identification of src. components
 - triggered development of new analysis tools

Thank you for your attention and interest!