On The Origin of γ-ray Emission Toward SNR CTB 37A with FERMI LAT

Soheila Abdollahi^{*} | Tsunefumi Mizuno | Yasushi Fukazawa (Hiroshima University, Japan) & Hideaki Katagiri | Benjamin Condon

On behalf of the Fermi LAT collaboration

7th International Fermi Symposium Garmisch-Partenkirchen, Germany

October 2017

1

Gamma-ray

Space Telescope

Outline

- Mid-aged SNRs Interacting with Molecular Clouds (MCs)
- Scientific Goals
- SNR CTB 37A in Various Wavebands
- CTB 37A Analysis with Pass 8 of Fermi LAT
 - Source Localisation & Extension Fit
 - Spectral Analysis
- Broadband SED Modeling
- Discussion & Conclusion

Mid-aged SNRs Interacting with MCs

- Evidence of hadronic origin of the γ -ray emission in IC 443, W44, and W51C
- Expanding in dense medium as evidenced by 1720 MHz OH maser emission
- Usually as Mixed-morphology SNRs
- In most SNR/MCs, GeV γ -ray spectrum is best describes by a broken power law
 - Spectral breaks at an energy of several GeV
 - Less luminous at TeV energies

CTB 37A

- A member of this category with age of $\sim 10\,\rm kyr$
- Distance of ~ 7.9 kpc
- Interacting with several dense MCs
- Observed non-thermal X-ray emission: signature of a PWN?

Motivations

- Origin of Galactic CRs from γ -ray observation of SNR/MCs
 - Morphological study of SNR CTB 37A
 - Study of Wideband spectrum

Broadband Observation of CTB 37A

H.E.S.S. excess map

Look around CTB 37A

DATA SET

- 8 years of Pass 8 data
- Energy: 200 MeV- 200 GeV
- Zmax: 105° (>1 GeV) and 90° (<1 GeV)
- ROI: 15° in radius
- Standard diffuse Galactic and isotropic models
- 3FGL catalog for background sources + CTB 37B
 - ▶ an angular distance of < 0.35° from CTB 37A
 - resolved above 10 GeV in 3FHL catalog

Previous studies:

D. Castro & P. Slane, 2010

T. J. Brandt, 2013

Highlights

• More detailed morphological and spectral studies of CTB 37A, using improved performance in Pass 8 and more accurate treatment of the nearby source CTB 37B.

Counts map (with gtlike) with a pixel size of 0.1° smoothed with $\sigma = 0.15^{\circ}$

Morphological Analysis

- Best-fit Gaussian spatial model of r_{68} =0.18° ± 0.02° above 0.2 GeV with LogParabola spectral shape
- A good agreement with the radio extension

TS excess map in the energy range 0.2-200 GeV in $0.9^{\circ} \times 0.9^{\circ}$

Spectral Energy Distribution

• Spatial model: best-fit Gaussian of $\sigma = 0.12^{\circ} \pm 0.01^{\circ}$

- Systematic error is not included yet
- Total energy flux in the energy range 0.2-100 GeV:

 $(90.54 \pm 2.83_{\text{stat.}}) \text{ eV cm}^{-2} \text{ s}^{-1}$

Extrapolation of HESS data toward the LAT range slightly underpredicts the LAT measurements

Germi Discussion: CTB 37A as a Composite SNR?

A possible

composite SNR

Morphological Point of View:

- The TeV & X-ray offset of ~ 3.6' can be explained by breakout morphology of the remnant due to a strong density gradients
- TeV emission size of 4' ± 1' in radius
- Non-thermal X-ray emission size is consistent with the mid-aged PWNe

Spectral Point of View:

- Spectral analysis of NW hard spot:
 - Suzaku Index: 1.94 (+0.15 -0.14) typical index value of PWNe, source extraction radius: 2'
 - Chandra & XMM-Newton Index: 1.32 (+0.39 -0.35), source extraction radius: 50"
- VHE γ -ray source: spectral index of 2.30 ± 0.13_{stat.} ± 0.20_{sys.}

Space Telescope

Dermi Gamma-ray Space Telescope

Nature of the γ -ray emission: SNR Contribution

Similar to SNR W44

	Hadronic Model				Kep	Emax	B	n H	$W_{ ho}$	We	
	Protons: Broken Power Law		Electrons: PL with Exp. Cut-off								
C	μ μ	αH	P _{br} (GeV/c)	α	E _c (GeV)		(GeV)	(µG)	(cm ⁻³)	(10 ⁴⁹ erg)	(10 ⁴⁹ erg)
2	.1	2.7	10	1.6	10	0.01	6.0E+03	350.0	350	1.50	2.38E-02

Nature of the γ -ray emission: PWN Contribution

Baseline Model (PWN part)

Dermi

Gamma-ray Space Telescope

Two independent sources: an SNR and a plausible PWN

- The X-ray and TeV emission with energetic leptons

Suzaku by looking at a relatively large region can sample both young and old population of electrons

- 1st hump in X-ray via synchrotron radiation of younger and high energetic electrons
- 2nd hump in TeV via ICS of CMB photons by older and less energetic electrons

L	K_{ep}	B	We		
PL w	Electrons: ith Super Exp. Cu				
α	E _c (GeV)	β	•	(µG)	(10 ⁴⁸ erg)
2.30	9.5E+04	0.65	1	5.1	5.17

S. Abdollahi

10

Broadband SED Modeling of CTB 37A: Summation of SNR & PWN models

Summary & Conclusion

- CTB 37A extension:
 - Best-fit Gaussian model of $r_{68}=0.18^\circ\pm0.02^\circ$ is favored over a point-like source with $TS_{ext}=145.$
- Nature of *γ*-ray emission:
 - GeV emission can not connect to the TeV emission, smoothly.
 - → Suggests two different origins for GeV and TeV emission
- Implication of the multi-wavelength spectrum: an SNR + a PWN
 - Non-thermal X-ray and TeV emission can be explain by a plausible PWN
 - Radio and GeV emission from the SNR
- SNR model Characteristics:
 - Broken power law spectrum of proton with a break at 10 GeV/c and index of
 2.1 before break and 2.7 after break.
 - Amplified magnetic field of 350 μG
 - $W_p = 1.50 \times 10^{49} \text{ erg}$

BACK-UP

Sermi Gamma-ray Space Telescope

Spectral Energy Distribution

Model Parameters of Several SNR/MC

Model Parameter	W51C ¹	$W44^2$	$W28^3$		
(Hadronic)			Source N	Source S	
Age (10 ⁴ yr)	3.0	2.0	4.0		
d (kpc)	6	3.1	2.0		
B (μG)	40	210	160	1.2×10^{3}	
n _H (cm ⁻³)	10	300	100	1000	
$\mathbf{K}_{\mathbf{ep}}$	0.02	0.01+	0.01		
$\alpha_{ m L}$	1.5	2.2±0.1	1.7		
$\alpha_{\rm H}$		3.2 ± 0.1	2.7	2.4	
$\Delta \alpha$	1.4				
Radio Spectral Index	-0.26	-0.37	-0.35 ± 0.18		
E _b (GeV)	15	20±1	2		
W _p (10 ⁴⁹ erg)	52	5	1.3	1.5×10-2	
W _e (10 ⁴⁹ erg)	1.3	5.6×10-2	1.9×10-2	6.5×10-5	

¹W51C: A. A. Abdo et al., 2009, ApJL, 706, L1

²W44: M. Cardillo et al., 2014, A&A, 565, A74

†at 10 GeV

Note: For the leptonic contribution: a simple PL with cut-off for electrons with a = 1.74 and $E_c = 12 \pm 1$ GeV

³W28: A. A. Abdo et al., 2010, ApJL, 718, 348