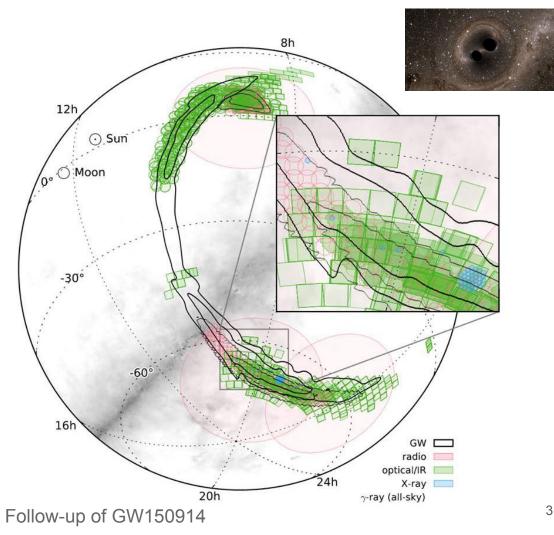

Searches for electromagnetic counterparts of multi-messenger transients with INTEGRAL

V. Savchenko on behalf of the INTEGRAL MM collaboration

Fermi symposium 2017, Garmisch-Partenkirchen

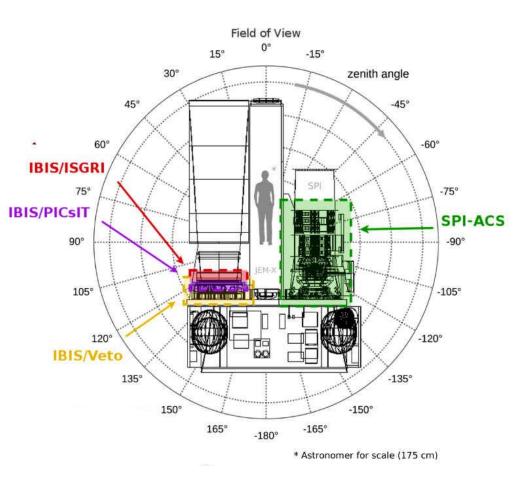
LIGO/Virgo 2015- August 2017: 5 binary black holes



Electromagnetic follow-up challenges

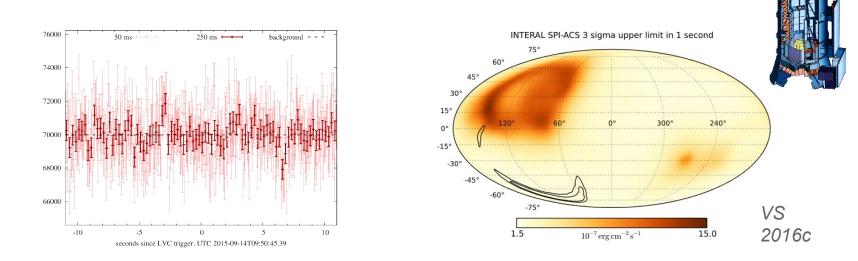
The alerts are promptly distributed to observers from radio to gamma-ray, who made the agreements with LIGO/Virgo collaboration.


LIGO/Virgo - INTEGRAL MoU was lead by the project scientist, ISDC, and institutes from the entire INTEGRAL collaboration



INTEGRAL

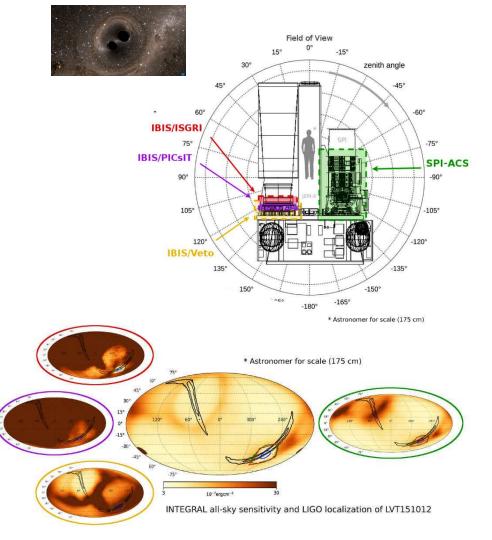
Features all-sky sensitivity > 100 keV (**no Earth shadow**), but almost no resolution for weak events from some directions


Broad energy range (3 keV - 8 MeV) in FoV (~800 deg²).

INTEGRAL observations of GW150914

10⁻⁶ - ratio of energy in 75-2000 keV to GW energy

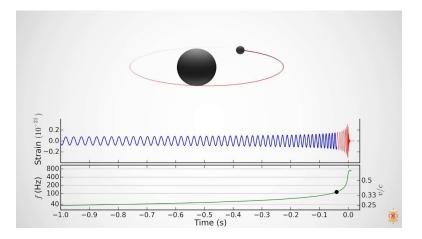
A milestone observation, also establishing an example of INTEGRAL observations, SPI-ACS in this case.

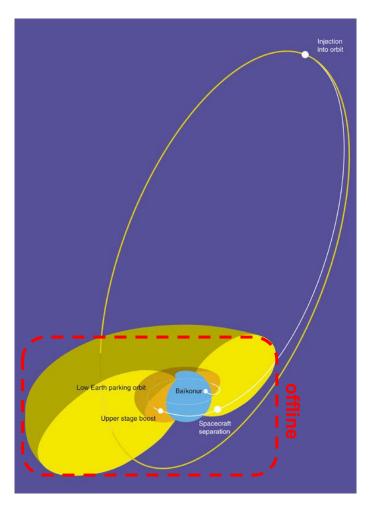

LVT151012

The most distant GW event so far

The GW localization required **synergy of all INTEGRAL instruments**, all-sky and pointed

Also allowed us to provide an update and review of the INTEGRAL sensitivities


Similar limits were obtained for GW170104, GW170814



GW151226

The only event so far missed due to the perigee passage (85% duty cycle)

GW170817+GRB170817A

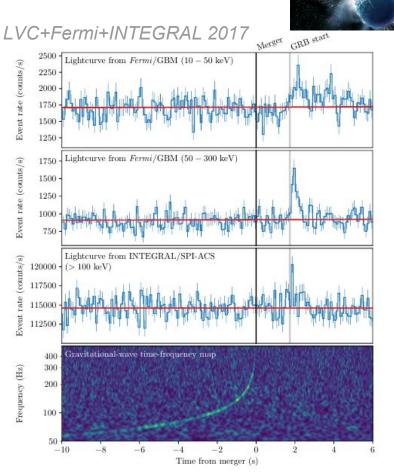
Binary Neutron Star merger, discovered by Fermi/GBM and LIGO, was independently detected by INTEGRAL/SPI-ACS (in a very good with Fermi characterization)

---- best fit GBM model

IBIS/PICsIT

SPI-ACS

107

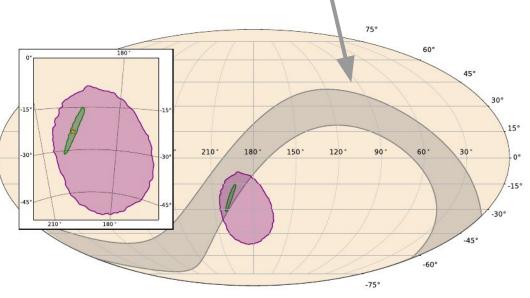

10

cm⁻²

₩ 10⁻

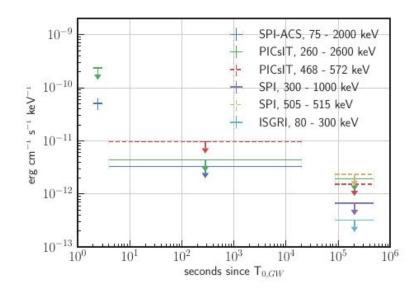
10

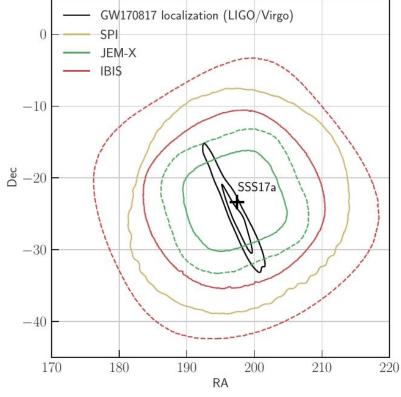
INTEGRAL 2017 10-2017



9

Joint localization


By comparing time of burst arrival to INTEGRAL localization can be improved. Such localizations, **promptly available in the future, will aid the follow-up**


LIGO/Virgo observation alone allows to measure distance to the GW source of **40 Mpc**, exceptional for a short GRB with measured distance, and well within LIGO BNS horizon

INTEGRAL pointed follow-up

A GRB at 40 Mpc could have produced bright **hard X-ray/gamma-ray afterglow** and **gamma-ray lines** of the kilonova from **3 keV to 8 MeV**.

VS 2017 ¹⁰

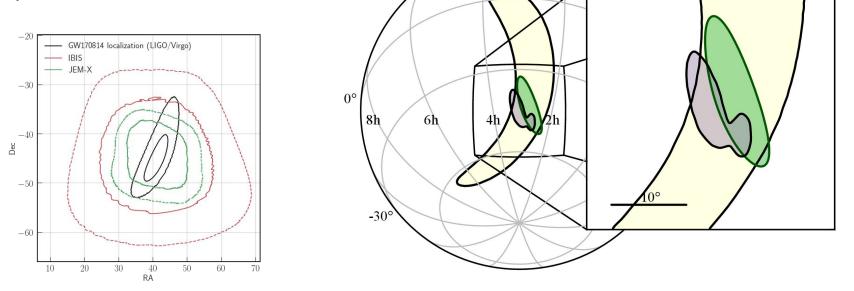
Summary

INTEGRAL follow-up 5 out of 6 reported events, as expected with 85% duty cycle. **Combination of the high duty cycle and high sensitivity is unique and allowed it to contribute to the historic detection of GRB170817A**

Detection of a GRB from an off-axis merger implies much more frequent GRB-BNS associations, which **might happen regularly in the next LIGO-Virgo run (from late 2018)**

Multimessenger observations open possibilities for studying processes in energetic events involving compact objects, implications that go beyond BNS mergers. This will improve with more detections in O3.

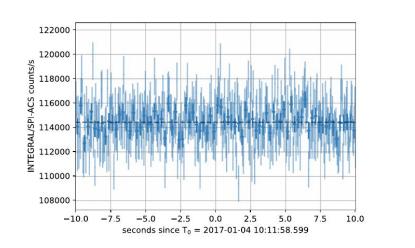
Early joint GRB-GW detection teaches to be prepared for unexpectedly optimistic scenario!


Neutrino follow-ups remain very promising and tentative MM detections might soon reach the level of solid evidence

Backup

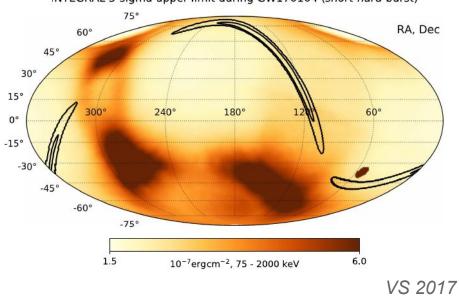
GW170814 first joint LIGO+Virgo detection

Precise localization allowed accurate follow-up with IBIS, JEM-X, and SPI

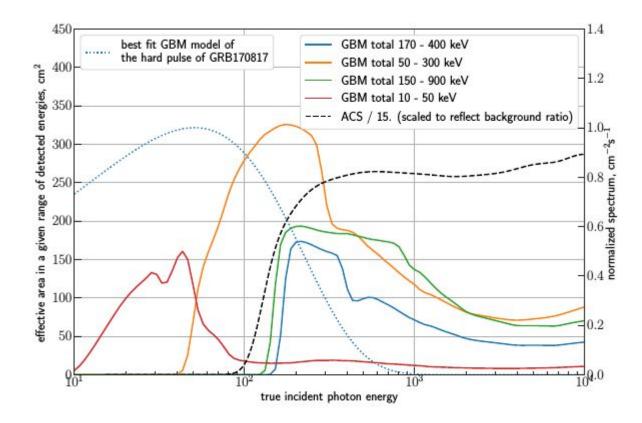

30°

This case is not expected to be very frequent, but it's vital for exploring the complete localization, (INTEGRAL work in progress)

14

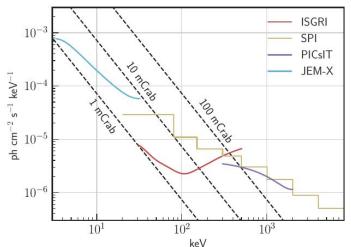

GW170104

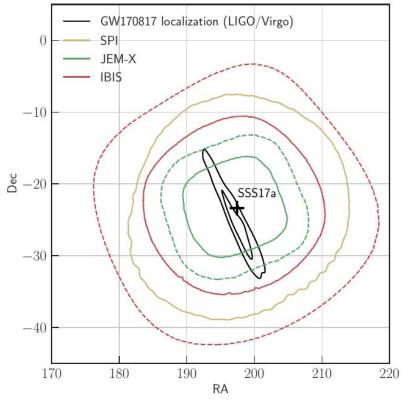
Again, no detection and quite suitable orientation for an upper limit


Many events in the future will follow these examples, it's time for catalog studies

e

INTEGRAL 3-sigma upper limit during GW170104 (short-hard burst)


GBM channels vs SPI-ACS



INTEGRAL pointed follow-up

A GRB at 40 Mpc could have produced bright hard X-ray afterglow

Kilonova is powered by radioactive decays, which could produce gamma-ray lines, visible by SPI

